Hostname: page-component-788cddb947-t9bwh Total loading time: 0 Render date: 2024-10-10T12:15:25.632Z Has data issue: false hasContentIssue false

A HRTEM Study of Cronstedtite: Determination of Polytypes and Layer Polarity in Trioctahedral 1:1 Phyllosilicates

Published online by Cambridge University Press:  28 February 2024

Toshihiro Kogure
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo 113-0033, Japan
Jiří Hybler
Affiliation:
Institute of Physics, Science Academy of the Czech Republic, Na Slovance 2, CZ-18221, Praha 8, Czech Republic
Slavomil Ďurovič
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-84236, Bratislava, Slovak Republic
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that polytypes or stacking sequences of cronstedtite, an Fe-bearing trioctahedral 1:1 phyllosilicate, can be determined using near-atomic high-resolution transmission electron microscopy (HRTEM). By viewing along the [010], [310] and directions (orthohexagonal indexing), the four groups of the standard polytypes can be distinguished. Imaging along the [100], [110] and directions allows determination of the polytypes in each group. The polytypic sequences of groups A and C are intergrown at the monolayer level in cronstedtite from Lostwithiel, England, which is a new insight if compared with previous suggestions that layer stackings characteristic of different groups do not occur together. The HRTEM images also revealed the relationship between the layer polarity and the morphology of the cronstedtite crystals, where the tetrahedral sheet side points towards the top of the truncated pyramidal shape of the crystal.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

References

Bailey, S. W., 1969 Polytypism of trioctahedral 1:1 layer silicates Clays and Clay Minerals 17 355371 10.1346/CCMN.1969.0170605.CrossRefGoogle Scholar
Bailey, S. W. and Bailey, S. W., 1988 Polytypism of 1:1 layer silicates Hydrous Phyllosilicates (Exclusive of Micas) 927 10.1515/9781501508998-007.CrossRefGoogle Scholar
Banfield, J. F. and Murakami, T., 1998 Atomic-resolution transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlo-rite-vermiculite American Mineralogist 83 348357 10.2138/am-1998-3-419.CrossRefGoogle Scholar
Banfield, J. F. Veblen, D. R. and Smith, D. J., 1991 The identification of naturally occurring TiO2(B) by structure determination using high-resolution electron microscopy, image simulation, and distance-least-squares refinement American Mineralogist 76 343353.Google Scholar
Banfield, J. F. Bailey, S. W. and Barker, W. W., 1994 Polyso-matism, polytypism, defect microstructure, and relation mechanism in regularly and randomly interstratified serpentine and chlorite Contribution to Mineralogy and Petrology 117 137150 10.1007/BF00286838.CrossRefGoogle Scholar
Baronnet, A. and Kang, Z. C., 1989 About the origin of mica polytypes Phase Transitions .CrossRefGoogle Scholar
Dornberger-Schiff, K. and Ďurovič, S., 1975 OD interpretation of kaolinite-type structures—I: Symmetry of kaolin-ite packets and their stacking possibilities Clays and Clay Minerals 23 219229 10.1346/CCMN.1975.0230310.CrossRefGoogle Scholar
Dornberger-Schiff, K. and Ďurovič, S., 1975 OD interpretation of kaolinite-type structures—II: The regular polytypes (MDO polytypes) and their derivation Clays and Clay Minerals 23 231246 10.1346/CCMN.1975.0230311.CrossRefGoogle Scholar
Franzini, M., 1969 The A and B mica layers and the crystal structure of sheet silicates Contributions to Mineralogy and Petrology 21 203224 10.1007/BF00371751.CrossRefGoogle Scholar
Frondel, C., 1962 Polytypism in cronstedtite American Mineralogist 47 781783.Google Scholar
Geiger, C. A. Henry, D. L. Bailey, S. W. and Maj, J. J., 1983 Crystal structure of cronstedtite-2H 2 Clays and Clay Minerals 31 97108 10.1346/CCMN.1983.0310203.CrossRefGoogle Scholar
Hybler, J. Petřiček, V. Ďurovič, S. and Smrčok, , 2000 Refinement of the crystal structure of the cronstedtite-1T. Clays and Clay Minerals 48 331338 10.1346/CCMN.2000.0480304.CrossRefGoogle Scholar
Iijima, S. and Buseck, P. R., 1978 Experimental study of disordered mica structures by high-resolution electron microscopy Acta Crystallographica A34 709719 10.1107/S0567739478001473.CrossRefGoogle Scholar
Kilaas, R., 1998 Optical and near-optical filters in high-resolution electron microscopy Journal of Microscopy 190 4551 10.1046/j.1365-2818.1998.3070861.x.CrossRefGoogle Scholar
Kogure, T. and Banfield, J. F., 1998 Direct identification of the six polytypes of chlorite characterized by semi-random stacking American Mineralogist 83 925930 10.2138/am-1998-7-825.CrossRefGoogle Scholar
Kogure, T. and Banfield, J. F., 2000 New insights into biotite chloritization mechanism via polytype analysis American Mineralogist 85 12021208 10.2138/am-2000-8-913.CrossRefGoogle Scholar
Kogure, T. and Murakami, T., 1998 Structure and formation mechanism of low-angle grain boundaries in chlorite American Mineralogist 83 358364 10.2138/am-1998-3-420.CrossRefGoogle Scholar
Kogure, T. and Nespolo, M., 1999 First finding of a stacking sequence with (±60°, 180°) rotation in biotite Clays and Clay Minerals 47 784792 10.1346/CCMN.1999.0470614.CrossRefGoogle Scholar
Kogure, T. and Nespolo, M., 1999 A TEM study of long-period mica polytypes: determination of the stacking sequence of oxybiotite by means of atomic-resolution images and Periodic Intensity Distribution (PID) Acta Crystallographica B55 507516 10.1107/S0108768199003845.CrossRefGoogle Scholar
Kogure, T. Saiki, K. Konno, M. Kamino, T., Barbour, J. C. Roorda, S. Ila, D. and Tsujioka, M., 1999 HRTEM and EELS studies of reacted materials from CaF2 by electron beam irradiation Atomistic Mechanisms in Beam Synthesis and Irradiation of Materials 183188.Google Scholar
Meilini, M., 1982 The crystal structure of lizardite 1T: hydrogen bonds and polytypism American Mineralogist 67 587598.Google Scholar
Meilini, M. and Zanazzi, P. F., 1987 Crystal structures of lizardite-1T and lizardite-2H1 from Coli, Italy American Mineralogist 72 943948.Google Scholar
Smrčok, Ďurovič, S. Petřiček, V. and Weiss, Z., 1994 Refinement of the crystal structure of cronstedtite-3T Clays and Clay Minerals 42 544551 10.1346/CCMN.1994.0420505.CrossRefGoogle Scholar
Steadman, R., 1964 The structures of trioctahedral kaolin-type silicates Acta Crystallographica 17 924927 10.1107/S0365110X64002390.CrossRefGoogle Scholar
Steadman, R. and Nuttall, P. M., 1963 Polymorphism in cronstedtite Acta Crystallographica 16 18 10.1107/S0365110X63000013.CrossRefGoogle Scholar
Steadmann, R. and Nuttall, P. M., 1964 Further polymorphism in cronstedtite Acta Crystallographica 17 404406 10.1107/S0365110X64000913.CrossRefGoogle Scholar
Zvyagin, B. B., 1964 Electron Diffraction Analysis of Clay Mineral Structures. .Google Scholar
Zvyagin, B. B., 1967 Electron Diffraction Analysis of Clay Mineral Structures. 10.1007/978-1-4615-8612-8.CrossRefGoogle Scholar
Zvyagin, B. B. Vrublevskaya, Z. V. Zhukhlistov, A. P. Sidor-enko, O. V. Soboleva, S. V. and Fedotov, A. F., 1979 High-voltage Electron Diffraction in the Study of Layered Minerals. .Google Scholar