Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T11:50:55.191Z Has data issue: false hasContentIssue false

Energy Modeling of Competition Between Tubular and Platy Morphologies of Chrysotile and Halloysite Layers

Published online by Cambridge University Press:  01 January 2024

Andrei A. Krasilin*
Affiliation:
Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russia
*
*E-mail address of corresponding author: ikrasilin@mail.ioffe.ru

Abstract

The present study considered the problem of halloysite nanoscroll synthesis by energy modeling of the formation of chrysotile and halloysite particles. The main aim of the study was to reveal an energy preference between scrolled and platy morphologies of the particles. Both hydrosilicates possess the ability to scroll spontaneously but relatively facile hydrothermal synthesis of the nanoscrolls is available only to the former, whereas halloysite forms mainly plates under the same conditions. This issue was investigated by a phenomenological energy model, taking into account: (1) strain energy due to the size difference between metal oxide and silica sheets; (2) surface-energy difference on the opposite sides of the layer; and (3) adhesion energy. Calculations showed that the halloysite layer had a significant scrolling potential due to the first energy component, but the surface-energy difference acted in the opposite direction and tried to unbend the layer. In contrast, these two actions were co-directional in chrysotile layers. In both cases, the formation of multi-layered plates became more energy favorable when the specific surface energy of the edges decreased. In the range 0.5–3 J/m2 for the specific surface energy, only halloysite layers showed an energy preference for platy particles over nanoscrolls, especially at small layer sizes. Certain processes, such as hydration, could reduce the corresponding specific surface energy value and, as a result, could stabilize the platy morphology of halloysite at the earliest stages of particle growth under hydrothermal conditions.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arancibia-Miranda, N., Escudey, M., Ramírez, R., González, R.I., van Duin, A.C.T., & Kiwi, M. (2017). Advancements in the synthesis of building block materials: experimental evidence and modeled interpretations of the effect of Na and K on imogolite synthesis. The Journal of Physical Chemistry C, 121, 1265812668.CrossRefGoogle Scholar
Belloni, L. & Thill, A. (2016). Why a 1: 1 2D structure tends to roll? A thermodynamic perspective. Pp. 361386 in: Nanosized Tubular Clay Minerals: Halloysite and Imogolite (Yuan, P., Thill, A., and Bergaya, F., editors). Volume 7, Elsevier, Amsterdam.Google Scholar
Berthonneau, J., Grauby, O., Jeannin, C., Chaudanson, D., Joussein, E., & Baronnet, A. (2015). Native morphology of hydrated spheroidal halloysite observed by environmental transmission electron microscopy. Clays and Clay Minerals, 63, 368377.CrossRefGoogle Scholar
Bian, Z. & Kawi, S. (2020). Preparation, characterization and catalytic application of phyllosilicate: A review. Catalysis Today, 339, 323.CrossRefGoogle Scholar
Bloise, A., Barrese, E., & Apollaro, C. (2009a). Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers. Neues Jahrbuch für Mineralogie – Abhandlungen, 185, 297304.CrossRefGoogle Scholar
Bloise, A., Belluso, E., Barrese, E., Miriello, D., & Apollaro, C. (2009b). Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibers. Crystal Research and Technology, 44, 590596.CrossRefGoogle Scholar
Bloise, A., Belluso, E., Fornero, E., Rinaudo, C., Barrese, E., & Capella, S. (2010). Influence of synthesis conditions on growth of Ni-doped chrysotile. Microporous and Mesoporous Materials, 132, 239245.CrossRefGoogle Scholar
Bloise, A., Belluso, E., Catalano, M., Barrese, E., Miriello, D., & Apollaro, C. (2012). Hydrothermal alteration of glass to chrysotile. Journal of the American Ceramic Society, 95, 30503055.CrossRefGoogle Scholar
Cataldo, S., Lazzara, G., Massaro, M., Muratore, N., Pettignano, A., & Riela, S. (2018). Functionalized halloysite nanotubes for enhanced removal of lead(II) ions from aqueous solutions. Applied Clay Science, 156, 8795.CrossRefGoogle Scholar
Cavallaro, G., Danilushkina, A., Evtugyn, V., Lazzara, G., Milioto, S., Parisi, F., Rozhina, E., & Fakhrullin, R. (2017). Halloysite nanotubes: controlled access and release by smart gates. Nanomaterials, 7, 199.CrossRefGoogle ScholarPubMed
Chivilikhin, S.A., Popov, I.Y., & Gusarov, V.V. (2007). Dynamics of nanotube twisting in a viscous fluid. Doklady Physics, 52, 6062.CrossRefGoogle Scholar
Chivilikhin, S.A., Popov, I.Y., Svitenkov, A.I., Chivilikhin, D.S., & Gusarov, V.V. (2009). Formation and evolution of nanoscroll ensembles based on layered-structure compounds. Doklady Physics, 54, 491493.CrossRefGoogle Scholar
Churakov, S.V., Iannuzzi, M., & Parrinello, M. (2004). Ab Initio study of dehydroxylation-carbonation reaction on brucite surface. The Journal of Physical Chemistry B, 108, 1156711574.CrossRefGoogle Scholar
Cravero, F., Fernández, L., Marfil, S., Sánchez, M., Maiza, P., & Martínez, A. (2016). Spheroidal halloysites from Patagonia, Argentina: some aspects of their formation and applications. Applied Clay Science, 131, 4858.CrossRefGoogle Scholar
Cressey, B.A. & Whittaker, E.J.W. (1993). Five-fold symmetry in chrysotile asbestos revealed by transmission electron microscopy. Mineralogical Magazine, 57, 729732.CrossRefGoogle Scholar
da Silva, M.C., dos Santos, E.C., Lourenço, M.P., Gouvea, M.P., & Duarte, H.A. (2015). Structural, electronic, and mechanical properties of inner surface modified imogolite nanotubes. Frontiers in Materials, 2, 110.CrossRefGoogle Scholar
Demichelis, R., De La Pierre, M., Mookherjee, M., Zicovich-Wilson, C.M., & Orlando, R. (2016). Serpentine polymorphism: a quantitative insight from first-principles calculations. CrystEngComm, 18, 44124419.CrossRefGoogle Scholar
Desgranges, L., Calvarin, G., & Chevrier, G. (1996). Interlayer interactions in M(OH)2: a neutron diffraction study of Mg(OH)2. Acta Crystallographica Section B: Structural Science, 52, 8286.CrossRefGoogle Scholar
Du, P., Thill, A., Yuan, P., Wang, S., Liu, D., Gobeaux, F., Deng, L., & Song, Y. (2020). Tailoring structure and surface chemistry of hollow allophane nanospheres for optimization of aggregation by facile methyl modification. Applied Surface Science, 510, 145453.CrossRefGoogle Scholar
Dumitrică, T., Landis, C.M., & Yakobson, B.I. (2002). Curvature-induced polarization in carbon nanoshells. Chemical Physics Letters, 360, 182188.CrossRefGoogle Scholar
Evarestov, R.A. & Bandura, A.V. (2004). HF and DFT calculations of MgO surface energy and electrostatic potential using two- and three-periodic models. International Journal of Quantum Chemistry, 100, 452459.CrossRefGoogle Scholar
Ferrante, F., Armata, N., & Lazzara, G. (2015). Modeling of the halloysite spiral nanotube. The Journal of Physical Chemistry C, 119, 1670016707.CrossRefGoogle Scholar
Fleming, S., Rohl, A., Lee, M.-Y., Gale, J., & Parkinson, G. (2000). Atomistic modelling of gibbsite: surface structure and morphology. Journal of Crystal Growth, 209, 159166.CrossRefGoogle Scholar
Goda, E.S., Gab-Allah, M.A., Singu, B.S., & Yoon, K.R. (2019). Halloysite nanotubes based electrochemical sensors: A review. Microchemical Journal, 147, 10831096.CrossRefGoogle Scholar
González, R.I., Valencia, F.J., Rogan, J., Valdivia, J.A., Sofo, J., Kiwi, M., & Munoz, F. (2018). Bending energy of 2D materials: graphene, MoS2 and imogolite. RSC Advances, 8, 45774583.CrossRefGoogle Scholar
Guimarães, L., Enyashin, A.N., Seifert, G., & Duarte, H.A. (2010). Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. The Journal of Physical Chemistry C, 114, 1135811363.CrossRefGoogle Scholar
Holec, D., Dumitraschkewitz, P., Vollath, D., & Fischer, F.D. (2020). Surface energy of Au nanoparticles depending on their size and shape. Nanomaterials, 10, 484.CrossRefGoogle ScholarPubMed
Ivanov, V.K., Fedorov, P.P., Baranchikov, A.Y., & Osiko, V.V. (2014). Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russian Chemical Reviews, 83, 12041222.CrossRefGoogle Scholar
Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Drozdova, I.A., & Gusarov, V.V. (2004). Formation of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glass Physics and Chemistry, 30, 5155.CrossRefGoogle Scholar
Korytkova, E.N., Pivovarova, L.N., Semenova, O.E., Drozdova, I.A., Povinich, V.F., & Gusarov, V.V. (2007). Hydrothermal synthesis of nanotubular Mg-Fe hydrosilicate. Russian Journal of Inorganic Chemistry, 52, 338344.CrossRefGoogle Scholar
Korytkova, E.N., Brovkin, A.S., Maslennikova, T.P., Pivovarova, L.N., & Drozdova, I.A. (2011). Influence of the physicochemical parameters of synthesis on the growth of nanotubes of the Mg3Si2O5(OH)4 composition under hydrothermal conditions. Glass Physics and Chemistry, 37, 161171.CrossRefGoogle Scholar
Krasilin, A.A. & Gusarov, V.V. (2014). Energy of formation of chrysotile nanotubes. Russian Journal of General Chemistry, 84, 23592363.CrossRefGoogle Scholar
Krasilin, A.A. & Gusarov, V.V. (2015). Energy model of bilayer nanoplate scrolling: Formation of chrysotile nanoscroll. Russian Journal of General Chemistry, 85, 22382241.CrossRefGoogle Scholar
Krasilin, A.A. & Gusarov, V.V. (2016). Energy model of radial growth of a nanotubular crystal. Technical Physics Letters, 42, 5558.CrossRefGoogle Scholar
Krasilin, A.A. & Gusarov, V.V. (2017). Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosystems: Physics, Chemistry, Mathematics, 8, 620627.Google Scholar
Krasilin, A.A., Suprun, A.M., Nevedomsky, V.N., & Gusarov, V.V. (2015). Formation of conical (Mg,Ni)3Si2O5(OH)4 nanoscrolls. Doklady Physical Chemistry, 460, 4244.CrossRefGoogle Scholar
Krasilin, A.A., Nevedomsky, V.N., & Gusarov, V.V. (2017). Comparative energy modeling of multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 nanoscroll growth. The Journal of Physical Chemistry C, 121, 1249512502.CrossRefGoogle Scholar
Krasilin, A.A., Khrapova, E.K., Nominé, A., Ghanbaja, J., Belmonte, T., & Gusarov, V.V. (2019a). Cation redistribution along the spiral of Ni-doped phyllosilicate nanoscrolls: energy modelling and STEM/EDS study. ChemPhysChem, 20, 719726.CrossRefGoogle ScholarPubMed
Krasilin, A.A., Danilovich, D.P., Yudina, E.B., Bruyere, S., Ghanbaja, J., & Ivanov, V.K. (2019b). Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls. Applied Clay Science, 173, 111.CrossRefGoogle Scholar
Kuroda, Y., Ito, K., Itabashi, K., & Kuroda, K. (2011). One-step exfoliation of kaolinites and their transformation into nanoscrolls. Langmuir, 27, 20282035.CrossRefGoogle ScholarPubMed
Lafay, R., Fernandez-Martinez, A., Montes-Hernandez, G., Auzende, A.L., & Poulain, A. (2016). Dissolution-reprecipitation and self-assembly of serpentine nanoparticles preceding chrysotile formation: Insights into the structure of proto-serpentine. American Mineralogist, 101, 26662676.CrossRefGoogle Scholar
Landau, L.D., Pitaevskii, L.P., Kosevich, A.M., & Lifshitz, E.M. (1986). Theory of Elasticity, third edition: Volume 7 (course of theoretical physics). Oxford, UK: Butterworth-Heinemann, Elsevier.Google Scholar
Lecouvet, B., Horion, J., D'Haese, C., Bailly, C., & Nysten, B. (2013). Elastic modulus of halloysite nanotubes. Nanotechnology, 24, 105704.CrossRefGoogle ScholarPubMed
Li, X., Wang, D., Liu, Q., & Komarneni, S. (2019). A comparative study of synthetic tubular kaolinite nanoscrolls and natural halloysite nanotubes. Applied Clay Science, 168, 421427.CrossRefGoogle Scholar
Liu, Q., Li, X., & Cheng, H. (2016). Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls. Applied Clay Science, 124–125, 175182.CrossRefGoogle Scholar
López-Salinas, E., Toledo-Antonio, J.A., Manríquez, M.E., Sánchez-Cantú, M., Cruz Ramos, I., & Hernández-Cortez, J.G. (2019). Synthesis and catalytic activity of chrysotile-type magnesium silicate nanotubes using various silicate sources. Microporous and Mesoporous Materials, 274, 176182.CrossRefGoogle Scholar
Lourenço, M.P., de Oliveira, C., Oliveira, A.F., Guimarães, L., & Duarte, H.A. (2012). Structural, electronic, and mechanical properties of single-walled chrysotile nanotube models. The Journal of Physical Chemistry C, 116, 94059411.CrossRefGoogle Scholar
Lvov, Y., Abdullayev, E. (2013). Functional polymer–clay nanotube composites with sustained release of chemical agents. Progress in Polymer Science, 38, 16901719.CrossRefGoogle Scholar
Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2016). Halloysite clay nanotubes for loading and sustained release of functional compounds. Advanced Materials, 28, 12271250.CrossRefGoogle ScholarPubMed
Lvov, Y., Panchal, A., Fu, Y., Fakhrullin, R., Kryuchkova, M., Batasheva, S., Stavitskaya, A., Glotov, A., & Vinokurov, V. (2019). Interfacial self-assembly in halloysite nanotube composites. Langmuir, 35, 86468657.CrossRefGoogle ScholarPubMed
Ma, W., Wu, H., Higaki, Y., & Takahara, A. (2018). Halloysite nanotubes: Green nanomaterial for functional organic-inorganic nanohybrids. The Chemical Record, 18, 986999.CrossRefGoogle ScholarPubMed
Mackrodt, W.C., Davey, R.J., Black, S.N., & Docherty, R. (1987). The morphology of α-Al2O3 and α-Fe2O3: The importance of surface relaxation. Journal of Crystal Growth, 80, 441446.CrossRefGoogle Scholar
Makó, É., Kovács, A., Antal, V., & Kristóf, T. (2017). One-pot exfoliation of kaolinite by solvothermal cointercalation. Applied Clay Science, 146, 131139.CrossRefGoogle Scholar
Maslennikova, T.P. & Gatina, E.N. (2017). Modification of Mg3Si2O5(OH)4 nanotubes by magnetite nanoparticles. Glass Physics and Chemistry, 43, 257262.CrossRefGoogle Scholar
Maslennikova, T.P. & Gatina, E.N. (2018). Hydrothermal synthesis of Ti-doped nickel hydrosilicates of various morphologies. Russian Journal of Applied Chemistry, 91, 286291.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Ogorodova, L.P., Kiseleva, I.A., Korytkova, E.N., & Gusarov, V.V. (2006). The enthalpies of formation of natural and synthetic nanotubular chrysotile. Russian Journal of Physical Chemistry, 80, 10211024.CrossRefGoogle Scholar
Ogorodova, L.P., Kiseleva, I.A., Korytkova, E.N., & Gusarov, V.V. (2007). Calorimetric investigation of nanotubular hydrosilicates in the Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 system. Glass Physics and Chemistry, 33, 303305.CrossRefGoogle Scholar
Paineau, E., Krapf, M.-E.M., Amara, M.-S., Matskova, N.V., Dozov, I., Rouzière, S., Thill, A., Launois, P., & Davidson, P. (2016). A liquid-crystalline hexagonal columnar phase in highly-dilute suspensions of imogolite nanotubes. Nature Communications, 7, 10271.CrossRefGoogle ScholarPubMed
Perbost, R., Amouric, M., & Olives, J. (2003). Influence of cation size on the curvature of serpentine minerals: HRTEM-AEM study and elastic theory. Clays and Clay Minerals, 51, 430438.CrossRefGoogle Scholar
Picot, P., Liao, Y., Barruet, E., Gobeaux, F., Coradin, T., & Thill, A. (2018). Exploring hybrid imogolite nanotube formation via Si/Al stoichiometry control. Langmuir, 34, 1322513234.CrossRefGoogle ScholarPubMed
Piperno, S., Kaplan-Ashiri, I., Cohen, S.R., Popovitz-Biro, R., Wagner, H.D., Tenne, R., Foresti, E., Lesci, I.G., & Roveri, N. (2007). Characterization of geoinspired and synthetic chrysotile nanotubes by atomic force microscopy and transmission electron microscopy. Advanced Functional Materials, 17, 33323338.CrossRefGoogle Scholar
Poli, E., Elliott, J.D., Hine, N.D.M., Mostofi, A.A., & Teobaldi, G. (2015). Large-scale density functional theory simulation of inorganic nanotubes: A case study on imogolite nanotubes. Materials Research Innovations, 19, S272–S282.CrossRefGoogle Scholar
Poli, E., Elliott, J.D., Ratcliff, L.E., Andrinopoulos, L., Dziedzic, J., Hine, N.D.M., Mostofi, A.A., Skylaris, C.-K., Haynes, P.D., & Teobaldi, G. (2016). The potential of imogolite nanotubes as (co-)photocatalysts: A linear-scaling density functional theory study. Journal of Physics: Condensed Matter, 28, 074003.Google ScholarPubMed
Prishchenko, D.A., Zenkov, E.V., Mazurenko, V.V., Fakhrullin, R.F., Lvov, Y.M., & Mazurenko, V.G. (2018). Molecular dynamics of the halloysite nanotubes. Physical Chemistry Chemical Physics, 20, 58415849.CrossRefGoogle ScholarPubMed
Roveri, N., Falini, G., Foresti, E., Fracasso, G., Lesci, I.G., & Sabatino, P. (2006). Geoinspired synthetic chrysotile nanotubes. Journal of Materials Research, 21, 27112725.CrossRefGoogle Scholar
Saalfeld, H. & Wedde, M. (1974). Refinement of the crystal structure of gibbsite, Al(OH)3. Zeitschrift für Kristallographie, 139, 129135.CrossRefGoogle Scholar
Shafia, E., Esposito, S., Armandi, M., Manzoli, M., Garrone, E., & Bonelli, B. (2016). Isomorphic substitution of aluminium by iron into single-walled alumino-silicate nanotubes: A physico-chemical insight into the structural and adsorption properties of Fe-doped imogolite. Microporous and Mesoporous Materials, 224, 229238.CrossRefGoogle Scholar
Shannon, R.D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32, 751767.CrossRefGoogle Scholar
Sharikov, F.Y., Korytkova, E.N., & Gusarov, V.V. (2007). Effect of the thermal prehistory of components on the hydration and crystallization of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glass Physics and Chemistry, 33, 515520.CrossRefGoogle Scholar
Shchipalov, Y.K. (2000). Surface energy of crystalline and vitreous Silica. Glass and Ceramics, 57, 374377.CrossRefGoogle Scholar
Singh, B. (1996). Why does halloysite roll?—A new model. Clays and Clay Minerals, 44, 191196.CrossRefGoogle Scholar
Thill, A., Guiose, B., Bacia-Verloop, M., Geertsen, V., & Belloni, L. (2012). How the diameter and structure of (OH)3Al2O3SixGe1–xOH imogolite nanotubes are controlled by an adhesion versus curvature competition. The Journal of Physical Chemistry C, 116, 2684126849.CrossRefGoogle Scholar
Thill, A., Picot, P., & Belloni, L. (2017). A mechanism for the sphere/tube shape transition of nanoparticles with an imogolite local structure (imogolite and allophane). Applied Clay Science, 141, 308315.CrossRefGoogle Scholar
Tolman, R.C. (1949). The effect of droplet size on surface tension. The Journal of Chemical Physics, 17, 333.CrossRefGoogle Scholar
Vollath, D., Fischer, F.D., & Holec, D. (2018). Surface energy of nanoparticles – influence of particle size and structure. Beilstein Journal of Nanotechnology, 9, 22652276.CrossRefGoogle ScholarPubMed
Wendler, K., Thar, J., Zahn, S., & Kirchner, B. (2010). Estimating the hydrogen bond energy. The Journal of Physical Chemistry A, 114, 95299536.CrossRefGoogle ScholarPubMed
White, R.D., Bavykin, D.V., & Walsh, F.C. (2012). Spontaneous scrolling of kaolinite nanosheets into halloysite nanotubes in an aqueous suspension in the presence of GeO2. The Journal of Physical Chemistry C, 116, 88248833.CrossRefGoogle Scholar
Zahidah, K.A., Kakooei, S., Ismail, M.C., & Bothi Raja, P. (2017). Halloysite nanotubes as nanocontainer for smart coating application: A review. Progress in Organic Coatings, 111, 175185.CrossRefGoogle Scholar
Zhang, H.L., Lei, X.R., Yan, C.J., Wang, H.Q., Xiao, G.Q., Hao, J.R., Wang, D., & Qiu, X.M. (2011). Analysis on crystal structure of 7Å-halloysite. Advanced Materials Research, 415–417, 22062214.CrossRefGoogle Scholar
Zsirka, B., Táborosi, A., Szabó, P., Szilágyi, R.K., Horváth, E., Juzsakova, T., Fertig, D., & Kristóf, J. (2017). Surface characterization of mechanochemically modified exfoliated halloysite nanoscrolls. Langmuir, 33, 35343547.CrossRefGoogle ScholarPubMed