Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-20T08:04:41.123Z Has data issue: false hasContentIssue false

Effect of Iron Oxide Dissolution Treatment on the Isoelectric Point of Allophanic Soils

Published online by Cambridge University Press:  02 April 2024

Mauricio Escudey
Affiliation:
Departamento de Quimica, Universidad de Santiago de Chile, Casilla 5659, Correo 2, Santiago, Chile
Gerardo Galindo
Affiliation:
Departamento de Quimica, Universidad de Santiago de Chile, Casilla 5659, Correo 2, Santiago, Chile
Jarel Ervin
Affiliation:
Department of Soil & Environmental Sciences, University of California, Riverside, California 92521

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1986, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appelt, H., Coleman, N. T. and Pratt, P. F., 1975 Interactions between organic compounds, minerals, and ions in volcanic ash-derived soils: I. Adsorption of benzoate, p-OH benzoate, salicylate, and phthalate ions Soil Sci. Soc. Amer. Proc. 39 623627.CrossRefGoogle Scholar
Bernas, B., 1968 A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry Anal. Chem. 40 16821686.CrossRefGoogle Scholar
Cavallaro, N. and McBride, M. B., 1984 Effect of selective dissolution on charge and surface properties of an acid soil clay Clays & Clay Minerals 32 283290.CrossRefGoogle Scholar
Escudey, M. and Galindo, G., 1983 Effect of iron oxide coatings on electrophoretic mobility and dispersion of al-lophane J. Colloid Interface Sci. 93 7883.CrossRefGoogle Scholar
Galindo, G., 1974 Electric charges, sorption of phosphate and cation exchange equilibria in Chilean Dystrandepts: Ph.D. thesis, Univ 452.Google Scholar
Gil-Llambías, F. J. and Escudey-Castro, A. M., 1982 Use of zero point charge measurements in determining the apparent surface coverage of Molybdene in MoO3/γ-Al2O3 catalysts J. Chem. Soc. Chem. Commun. 478479.CrossRefGoogle Scholar
Hunter, R.J., 1981 Zeta Potential in Colloid Science: Principles and Applications 59124.CrossRefGoogle Scholar
Kunze, G. W., 1965 Pretreatment for mineralogical analysis Methods of Soil Analysis. Part I, Agronomy 568577.CrossRefGoogle Scholar
McKeague, J. M. and Day, J. H., 1966 Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes of soils Can. J. Soil Sci. 46 1322.CrossRefGoogle Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals, Proc. 7th Natl. Conf, Washington, D.C., 1958 317327.CrossRefGoogle Scholar
Stumm, W. and Morgan, J. J., 1981 Aquatic Chemistry 599684.Google Scholar
Wada, K. and Gungijake, N., 1979 Active aluminum and iron and phosphate adsorption in Ando soils Soil Sci. 128 331336.CrossRefGoogle Scholar
Wada, K., Harward, M. E. and Brady, N. C., 1974 Amorphous clay constituents of soils Advances in Agronomy, Vol. 26 211260.CrossRefGoogle Scholar