Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T01:54:50.740Z Has data issue: false hasContentIssue false

Characterization of Goethite and Hematite in a Tunisian Soil Profile By Mössbauer Spectroscopy

Published online by Cambridge University Press:  02 April 2024

R. E. Vandenberghe
Affiliation:
>Laboratory of Magnetism, Gent State University, Belgium
E. De Grave
Affiliation:
>Laboratory of Magnetism, Gent State University, Belgium
G. De Geyter
Affiliation:
Laboratory of Mineralogy, Petrography and Micropedology, Gent State University, Belgium
C. Landuydt
Affiliation:
Laboratory of Mineralogy, Petrography and Micropedology, Gent State University, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As part of the characterization of a Tunisian red soil profile, six samples, taken at different depths, were investigated by Mössbauer spectroscopy at room temperature and at 80 K to obtain information about the various types of Fe oxides present. By considering magnetic hyperfine field distributions, the spectra of goethite and hematite were well resolved. Chemical analyses of the samples revealed a partial substitution of Fe by Al and Mn. The spectral behavior of the goethite was predominantly influenced by crystallinity and amount of Al substitution which resulted in a reduction of the magnetic hyperfine field. The effect of Mn substitution was much more pronounced in the hematite spectrum as a consequence of a stronger suppression of the Morin transition by Mn than by Al.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

Amarisiriwardena, D. D., De Grave, E., Bowen, L. H. and Weed, S. B., 1986 Quantitative determination of aluminum-substituted goethite-hematite mixtures by Mössbauer spectroscopy Clays & Clay Minerals 34 250256.CrossRefGoogle Scholar
Bancroft, G. M., 1973 Mössbauer Spectroscopy: An Introduction for Chemists and Geochemists United Kingdom McGraw-Hill Ltd., Maidenhead 226239.Google Scholar
Chambaere, D. G., Persoons, R., De Grave, E. and Verbeek, A.E., 1984 Uncertainties in the use of relative Mössbauer constants with mixtures containing iron hydroxides Abstracts 25th Meeting Mössbauer Spectroscopy Discussion Group, Oxford, United Kingdom North Carolina Mössbauer Effect Data Center, Univ. North Carolina, Asheville.Google Scholar
Chrisman, B. L. and Tumolillo, T. A., 1971 Computer analysis of Mössbauer spectra Computer Phys. Commun. 2 322330.CrossRefGoogle Scholar
De Grave, E., Bowen, L. H. and Weed, S. B., 1982 Mössbauer study of aluminum-substituted hematites J. Magn. Magn. Mat. 27 98108.CrossRefGoogle Scholar
Flanders, P. J. and Remeika, J. P., 1965 Magnetic properties of hematite single crystals Phil. Mag. 11 12711288.CrossRefGoogle Scholar
Fysh, S. A. and Clark, P. E., 1982 Aluminous goethite: a Mössbauer study Phys. Chem. Minerals 8 180187.CrossRefGoogle Scholar
Golden, D. C., Bowen, L. H., Weed, S. B. and Bigham, J. M., 1979 Mössbauer studies of synthetic and soil-oc-curring aluminum-substitutedgoethites Soil Sci. Soc. Amer. J. 43 802808.CrossRefGoogle Scholar
Goodman, B. A. and Lewis, D. G., 1981 Mössbauer spectra of aluminous goethites J. Soil Sci. 32 351363.CrossRefGoogle Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays & Clay Minerals, Proc. 7th Natl. Conf, Washington, D.C., 1958 New York Pergamon Press 317327.Google Scholar
Mørup, S., Madson, B. M., Franck, J., Villadsen, J. and Koch, C. J. W., 1983 A new interpretation of Mössbauer spectra of microcrystalline goethites: “super-ferromagnetism” or “super-spin-glass” behaviour J. Magn. Magn. Mat. 40 163174.CrossRefGoogle Scholar
Murad, E., 1982 The characterization of goethite by Mössbauer spectroscopy Amer. Mineral. 67 10071011.Google Scholar
Murad, E. and Schwertmann, U., 1983 The influence of aluminum substitution and crystallinity on the Mössbauer spectra of goethite Clay Miner. 18 301312.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Z. Pflanzenernähr. Düng. Bodenk. 105 194202.CrossRefGoogle Scholar
van der Kraan, A. M., 1972 Mössbauer effect studies of superparamagnetic a-FeOOH and a-Fe2O3 The Netherlands Ph.D. thesis, Univ. Delft, Delft 84.Google Scholar
Wivel, C. O. and Morup, S., 1981 Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra J. Phys. E 14 605610.CrossRefGoogle Scholar