Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T13:12:27.011Z Has data issue: false hasContentIssue false

Antibacterial finishing of textile materials using modified bentonite

Published online by Cambridge University Press:  22 January 2024

Ljiljana Topalić-Trivunović
Affiliation:
University of Banja Luka, Faculty of Technology, Banja Luka, Bosnia and Herzegovina
Aleksandar Savić*
Affiliation:
University of Banja Luka, Faculty of Technology, Banja Luka, Bosnia and Herzegovina
Rada Petrović
Affiliation:
University of Banja Luka, Faculty of Technology, Banja Luka, Bosnia and Herzegovina
Darko Bodroža
Affiliation:
University of Banja Luka, Faculty of Technology, Banja Luka, Bosnia and Herzegovina
Dragana Grujić
Affiliation:
University of Banja Luka, Faculty of Technology, Banja Luka, Bosnia and Herzegovina
Miodrag Mitrić
Affiliation:
Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
Zoran Obrenović
Affiliation:
University of East Sarajevo, Faculty of Technology, Zvornik, Bosnia and Herzegovina
Dragana Gajić
Affiliation:
University of Banja Luka, Faculty of Natural Sciences and Mathematics, Banja Luka, Bosnia and Herzegovina
Mugdin Imamović
Affiliation:
Cement Factory Lukavac, Lukavac, Bosnia and Herzegovina

Abstract

Direct application of heavy metals as antibacterial agents can cause skin irritations and discoloration of the tissue and it can result in short-term applicability. One of the ways to solve these problems is to immobilize these agents on bentonite. Treatment of textile materials with such activated bentonite for use in various branches of industry has attracted the attention of many researchers in recent years. The objective of the present study was to develop a potential use of Cu- and Zn-modified bentonites as antibacterial finishing agents for two textile materials, non-woven textile (NT) and knitted fabric (PL). The bentonite samples were characterized using ED-XRF (energy dispersive X-ray fluorescence spectrometry), XRPD (X-ray powder diffraction), SEM (scanning electron microscopy), FTIR (Fourier-transform infrared spectroscopy), and BET (N2 adsorption-desorption) analyses. SiO2 and Al2O3 oxides were the main components of all bentonite samples indicated by ED-XRF analysis, while the XRPD analysis confirmed that the natural bentonite (NB) consisted of montmorillonite (Mnt) as the dominant mineral (peaks at 6.94, 19.94, 35.09, and 54.09°2θ) and small amounts of quartz and calcite. A reduction in the basal plane spacing, d001, of Mnt occurred in Cu/Zn-B1, Cu/Zn-B3, and CuB, while in Cu/Zn-B2 and ZnB the basal spacing increased. Also, the size and form of particles and porosity changed, which was confirmed by the BET analysis. Modified bentonite samples experienced a reduction in the specific surface area and total pore volume, as well as movement of the middle mesopore diameter toward the larger diameters. The Zn-modified bentonite demonstrated a greater antibacterial effect on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus than Cu- and Na-modified bentonite samples with a MIC (minimum inhibitory concentration) of 0.94 mg/mL, while among Cu/Zn bentonite samples, Cu/Zn-B2 had the strongest antibacterial effect (MIC 0.47 mg/mL). Cu/Zn-B2 was integrated on NT and PL using a screen printing method and showed good antibacterial activity. The printed NT showed better activity than printed PL, and increasing the concentration of applied Cu/Zn-B2 also increased the antibacterial properties.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chun-Hui Zhou

References

REFERENCES

AATCC TM 147-2004. Test Method for Antibacterial Activity of Textile Materials: Parallel Streak. AATCC Manual of International Test Methods and Procedures.Google Scholar
Abdalkader, D., Al-Saedi, F.. (2020). Antibacterial effect of different concentration of zinc sulfate on multidrug resistant pathogenic bacteria. Systematic Reviews in Pharmacy. 11, (3), 282288.Google Scholar
Abou el-Kheir, A., El-Ghany, N.A.A., Fahmy, M.M., Aboras, S.E., El-Gabry, L.K.. (2020). Functional finishing of polyester fabric using bentonite nano-particles. Egyptian Journal of Chemistry. 63, (1), 8599, 10.21608/EJCHEM.2019.20404.2223.CrossRefGoogle Scholar
Aguzzi, C., Cerezo, P., Viseras, C., Caramella, C.. (2007). Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science. 36, 2236, 10.1016/j.clay.2006.06.015.CrossRefGoogle Scholar
Ahamed, M., Alhadlaq, H. A., Khan, M. A. M., Karuppiah, P., & Al-Dhabi, N. A. (2014). Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. Journal of Nanomaterials, 637858. https://doi.org/10.1155/2014/637858.Google Scholar
Aldayel, O.A., Alandis, N.M., Mekhemer, W.K., Hefne, J.A., Al-Raddadi, S.. (2008). Zn(II) removal using natural bentonite: Thermodynamics and kinetic studies. Material Science Research India. 5, (1), 2536, 10.13005/msri/050104.CrossRefGoogle Scholar
Amir, M., Hasany, S.F., Asghar, M.S.A.. (2023). Modification of bentonite nanoclay for textile application. Polimery. 68, (2), 7985, 10.14314/polimery.2023.2.1.CrossRefGoogle Scholar
Aprile, F., Lorandi, R.. (2012). Evaluation of Cation Exchange Capacity (CEC) in Tropical Soils Using Four Different Analytical Methods. Journal of Agricultural Science. 4, (6), 278289, 10.5539/jas.v4n6p278.CrossRefGoogle Scholar
Bagchi, B., Kar, S., Dey, S.K., Bhandary, S., Roy, D., Mukhopadhyay, T.K., Das, S., Nandy, P.. (2013). In situ synthesis and antibacterial activity of copper nanoparticle loaded natural Mnt clay based on contact inhibition and ion release. Colloids and Surfaces B: Biointerfaces. 108, 358365, 10.1016/j.colsurfb.2013.03.019.CrossRefGoogle Scholar
Balci, S.. (2019). Structural Property Improvements of Bentonite with Sulfuric Acid Activation and a Test in Catalytic Wet Peroxide Oxidation of Phenol. International Journal of Chemical Reactor Engineering. 17, (6), 20180167, 10.1515/ijcre-2018-0167.Google Scholar
Balek, V., Beneš, M., Šubrt, J., Pérez-Rodriguez, J.L., Sánchez-Jiménez, P.E., Pérez-Maqueda, L.A., Pascual-Cosp, J.. (2008). Thermal characterization of Mnt clays saturated with various cations. Journal of Thermal Analysis and Calorimetry. 92, (1), 191197, 10.1007/s10973-007-8761-9.7.CrossRefGoogle Scholar
Barrett, E.P., Joyner, L.G., Halenda, P.P.. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society. 73, (1), 373380, 10.1021/ja01145a126.CrossRefGoogle Scholar
Begam, R., Joshi, M., Parwar, R.. (2022). Antimicrobial finishing of cotton textiles using silver intercalated clay. Fibers and Polymers. 23, (1), 148154, 10.1007/s12221-021-3178-9.CrossRefGoogle Scholar
Benhalima, L., Amri, S., Bensouilah, M., Ouzrout, R.. (2019). Antibacterial effect of copper sulfate against multi-drug resistant nosocomial pathogens isolated from clinical samples. Pakistan Journal of Medical Sciences. 35, (5), 13221328, 10.12669/pjms.35.5.336.CrossRefGoogle ScholarPubMed
Benli, H., Bahtiyari, . (2015). Use of ultrasound in biopreparation and natural dyeing of cotton fabric in a single bath. Cellulose. 22, 867877, 10.1007/s10570-014-0494-x.CrossRefGoogle Scholar
Bhattacharya, M., Maiti, M., Bhowmick, A.K.. (2008). Influence of different nanofillers and their dispersion methods on the properties of natural rubber nanocomposites. Rubber Chemistry and Technology. 81, (5), 782808, 10.5254/1.3548232.CrossRefGoogle Scholar
Catovic, C., Abbes, I., Barreau, M., Sauvage, C., Follet, D-PC, Groboillot, A., Leblanc, S., Svinareff, P., Chevalier, S., Feuillolley, M.G.J.. (2022). Cotton and flax textiles leachables impact differently cutaneous Staphylococcus aureus and Staphylococcus epidermidis biofilm formation and cytotoxicity. Life. 12, 535, 10.3390/life12040535.CrossRefGoogle ScholarPubMed
Carpio, M.I.E., Ansari, A., Rodrigues, D.F.. (2018). Relationship of biodiversity with heavy metal tolerance and sorption capacity: a meta-analysis approach. Environmental Science & Technology. 52, (1), 185194, 10.1021/acs.est.7b04131.Google Scholar
Caruso, M.R., Cavallaro, G., Milioto, S., Fakhrullin, R., Lazzara, G.. (2023). Halloysite nanotubes/Keratin composites for wool treatment. Applied Clay Science. 238, , 10.1016/j.clay.2023.106930.CrossRefGoogle Scholar
Chen, M. X., Alexander, K. S., & Baki, G. (2016). Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application. Journal of Pharmaceutics, 5754349. https://doi.org/10.1155/2016/5754349.CrossRefGoogle Scholar
Claudel, M., Schwarte, J.V., Fromm, K.M.. (2020). New antimicrobial strategies based on metal complexes. Chemistry. 2, 849899, 10.3390/chemistry2040056.CrossRefGoogle Scholar
Clegg, F., Breen, C., Muranyi, P., Schönweitz, C.. (2019). Antimicrobial, starch based barrier coatings prepared using mixed silver/sodium exchanged bentonite. Applied Clay Science. 179, 105144, 10.1016/j.clay.2019.105144.CrossRefGoogle Scholar
da Silva, B.L., Abucafy, M.P., Manaia, E.B., Junior, J.A.O., Chiari-Andreo, B.G., Pietro, RCLR, Chiavacci, L.A.. (2019). Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. International Journal of Nanomedicine. 14, 93959410, 10.2147/IJN.S216204.CrossRefGoogle Scholar
de Araujo, A.L.P., Bertagnolli, C., da Silva, M.G.C., Gimenes, M.L., de Barros, MASD. (2013). Zinc adsorption in bentonite clay: influence of pH and initial concentration. Acta Scientiarum Technology. 35, (2), 325332, 10.4025/actascitechnol.v35i2.13364.CrossRefGoogle Scholar
de Oliviera, C.R.S., Batistella, M.A., Lourenco, L.A., de Aruda, S.M., de Souza, G.U., de Souza, A.A.U.. (2021). Cotton fabric finishing based on phosphate/clay mineral by direct-coating technique and its influence on the thermal stability of the fibers. Progress in Organic Coatings. 150, , 10.1016/j.porgcoat.2020.105949.Google Scholar
DIN 53923. (2022). DE. Testing of Textiles; Determination of Water Absorption of Textile Fabrics. Berlin: Beuth Verlag.Google Scholar
Ezquerro, C. S., Ric, G. I., Miñana, C. C., & Bermejo, J. S. (2015). Characterization of Mnts modified with organic divalent phosphonium cations. Applied Clay Science, 111, 19. https://doi.org/10.1016/j.clay.2015.03.022.CrossRefGoogle Scholar
Farmer, V.C.. Farmer, V.C.. (1974). The layer silicates. The Infrared Spectra of Minerals. Mineralogical Society. 331363, 10.1180/mono-4.15.CrossRefGoogle Scholar
Gamiz, E., Linares, J., Delgado, R.. (1992). Assessment of two Spanish bentonites for pharmaceutical uses. Applied Clay Science. 6, 359368, 10.1016/0169-1317(92)90003-6.CrossRefGoogle Scholar
Garshasbi, N., Ghorbanpour, M., Nouri, A., Loffiman, S.. (2017). Preparation of zinc oxide-nanoclay hybrids by alkaline ion exchange method. Brazilian Journal of Chemical Engineering. 34, (04), 10551063, 10.1590/0104-6632.20170344s20150570.CrossRefGoogle Scholar
Gomes, C., Rautureau, M., Poustis, J., Gomes, J.. (2021). Benefits and risks of clays and clay minerals to human health from ancestral to current times: a synoptic overview. Clays and Clay Minerals. 69, 612632, 10.1007/s42860-021-00160-7.CrossRefGoogle Scholar
Grujić, D., Savić, A., Topalić-Trivunović, L., Jevšnik, S., Rijavec, T., Gorjanc, M.. (2015). The influence of plasma pretreatment on the structure and antimicrobial properties of knitted fabrics treated with herbal extracts. ACC Journal. 21, (1), 3042, 10.15240/tul/004/2015-1-004.CrossRefGoogle Scholar
Hasan, K., Hridam, D., Rahman, M., Morshed, M., Al Azad, S., Genyang, C.. (2016). A review on antibacterial coloration agents activity, implementation & efficiency to ensure the ecofriendly & green textiles. American Journal of Polymer Science & Engineering. 4, (1), 3959.Google Scholar
Hayati-Ashtiani, M.. (2012). Use of FTIR spectroscopy in the characterization of natural and treated nanostructured bentonite (Mnts). Particulate Science and Technology. 30, (6), 553564, 10.1080/02726351.2011.615895.CrossRefGoogle Scholar
Henao, S.G., Ghneim-Herrera, T.. (2021). Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers of Environmental Science & Engineering. 9, 604216, 10.3389/fenvs.2021.604216.CrossRefGoogle Scholar
Hong, R., Kang, T.Y., Michels, C.A., Gadura, N.. (2012). Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Applied and Environmental Microbiology. 78, (6), 17761784, 10.1128/AEM.07068-11.CrossRefGoogle ScholarPubMed
Horue, M., Cacicedo, M.L., Fernandez, M.A., Rodenak-Kladniew, B., Torez Sánchez, R.M., Castro, G.R.. (2020). Antimicrobial activities of bacterial cellulose – silver Mnt nanocomposites for wound healing. Material Science and Engineering: C. 116, , 10.1016/j.msec.2020.111152.Google Scholar
Hu, C.-H., Xia, M.-S.. (2006). Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Applied Clay Science. 31, (3-4), 180184, 10.1016/j.clay.2005.10.010.CrossRefGoogle Scholar
Ishida, T.. (2017). Bacteriolyses of bacterial cell walls by Cu(II) and Zn(II) ions based on antibacterial resultss of dilution medium method and halo antibacterial tests. Journal of Advanced Research in Biotechnology. 2, (2), 112, 10.15226/2475-4714/2/200120.CrossRefGoogle Scholar
Ivankovic, T., Rajic, A., Ercegovic Razic, S., Rolland du Roscoat, S., Skenderi, Z.. (2022). Antibacterial properties of non-modified wool, determined and discussed in relation to ISO 20645:2004 standard. Molecules. 27, 1876, 10.3390/molecules27061876.CrossRefGoogle ScholarPubMed
Javadhesari, S.M., Alipour, S., Mohammadhejad, S., Akbarpour, M.R.. (2019). Antibacterial activity of ultra-small copper oxide (II) nanoparticles synthesized by mechanochemical processing against S.aureus and E. coli. Materials Science & Engineering C. 105, , 10.1016/j.msec.2019.110011.Google Scholar
Jiao, L., Lin, F., Cao, S., Wang, C., Wu, H., Shu, M., Hu, C.. (2017). Preparation, characterization, antimicrobial and cytotoxicity studies of coper/zinc-loaded Mnt. Journal of Animal Science and Biotechnology. 8, 27, 10.1186/s40104-017-0156-6.CrossRefGoogle Scholar
Joshi, M., Ali, S.W., Purwar, R., Rajendran, S.. (2009). Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian Journal of Fibre and Textile Research. 34, (3), 295304.Google Scholar
Jović-Jovičić, N.P., Milutinović-Nikolić, A.D., Gržetić, I.A., Banković, P.T., Marković, D.M., Jovanović, . (2008). The influence of modification on structural textural and adsorption properties of bentonite. Hemijska Industrija. 62, (3), 131137, 10.2298/HEMIND0803131J.CrossRefGoogle Scholar
Kalia, A., Abd-Elsalam, K., Kuca, K.. (2020). Zinc-based nanomaterials for diagnosis and management of plant diseases: ecological safety and future perspective. Fungi. 6, (4), 222, 10.3390/jof6040222.CrossRefGoogle Scholar
Kaya, A., Ören, A.H.. (2005). Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials. B125, 183189, 10.1016/j.jhazmat.2005.05.027.CrossRefGoogle Scholar
Kertman, N., Dalbaşi, E.S., Körlü, A., Özgüney, A.T., Yapar, S.. (2020). A study on coating with nanoclay on the production of flame retardant cotton fabrics. Tekstil ve Konfeksiyon. 300, 4, 10.32710/tekstilvekonfeksiyon.675352.Google Scholar
Kozák, O., Praus, P., Machovič, V., Klika, Z.. (2010). Adsorption of zinc and copper ions on natural and ethylenediamine modified Mnt. Ceramics – Silikáty. 54, (1), 7884.Google Scholar
Kumar, A. & Lingfa, P. (2019). Physicochemical characterization of sodium bentonite clay and its significance as a catalyst in plastic waste valorization. In 3rd International Conference on Electronics, Materials Engineering & Nano Technology (IEMENTech) (pp. 14). https://doi.org/10.1109/IEMENTech48150.2019.8981195.CrossRefGoogle Scholar
Lippens, B.C., de Boer, J.H.. (1965). Studies on pore systems in catalysts: V. The t method. Journal of Catalysis. 4, (3), 319323, 10.1016/0021-9517(65)90307-6.CrossRefGoogle Scholar
Lisuzzo, L., Cavallaro, G., Milioto, S., Lazzara, G.. (2021). Halloysite nanotubes filled with MgO for paper reinforcement and deacidification. Applied Clay Science. 213, 106231, 10.1016/j.clay.2021.106231.CrossRefGoogle Scholar
Madejovà, J.. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy. 31, 110, 10.1016/S0924-2031(02)00065-6.CrossRefGoogle Scholar
Magana, S.M., Quintana, P., Aguilar, D.H., Toledo, J.A., Angeles-Chavez, C., Cortes, M.A., Leon, L., Freile-Pelegrin, Y., Lopez, T., Torres Sanchez, R.M.. (2008). Antibacterial activity of Mnts modified with silver. Journal of Molecular Catalysis A: Chemical. 281, 192199, 10.1016/j.molcata.2007.10.024.CrossRefGoogle Scholar
Martsouka, F., Papagiannopoulos, K., Hatziantoniou, S., Barlog, M., Lagiopoulos, G., Tatoulis, T., Tekerlekopoulou, A.G., Lampropoulou, P., Papoulis, D.. (2021). The antimicrobial properties of modified pharmaceutical bentonite with zinc and copper. Pharmaceutics. 13, (8), 1190, 10.3390/pharmaceutics13081190.CrossRefGoogle ScholarPubMed
Németh, T., Mohai, I., Tóth, M.. (2005). Adsorption of copper and zinc ions on various Mnts: an XRD study. Acta Mineralogica-Petrographica. 46, 2936.Google Scholar
Ning, C., Wang, X., Li, L., Zhu, Y., Li, M., Yu, P., Zhou, L., Zhou, Z., Chen, J., Tan, G., Zhang, Y., Wang, Y., Mao, C.. (2015). Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism. Chemcal Research. Toxicology, 21. 28, (9), 18151822, 10.1021/acs.chemrestox.5b00258.Google Scholar
Ortez, J.H.. Coyle, M.B.. (2005). Disk diffusion testing. Manual of Antimicrobial Susceptibility Testing. American Society for Microbiology. 3953.Google Scholar
Paetzold, O.H., Wiese, A.. (1975). Experimentelle untersuchungen über die antimikrobielle wirkung von zinkoxid. Archives of Dermatological Research. 253, 151159, 10.1007/BF00582067.CrossRefGoogle Scholar
Pajarito, B. B., Castañeda, K. C., Jeresano, S. D., & Repoquit, D. A. (2018). Reduction of Offensive Odor from Natural Rubber Using Zinc-Modified Bentonite. Advances in Materials Science and Engineering, ID, 9102825. https://doi.org/10.1155/2018/9102825.CrossRefGoogle Scholar
Parolo, M. E., Fernández, L. G., Zajonkovsky, I., Sánchez, M. P., & Baschini, M. . Antibacterial activity of materials synthesized from clay minerals. In: Mendez-Vilas, A., (2011). Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, pp. 144151.Google Scholar
Pasquet, J., Chevalier, Y., Pelletier, J., Couval, E., Bouvier, D., Bozinger, M.-A.. (2014). The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 457, (1), 263274, 10.1016/j.colsurfa.2014.05.057.CrossRefGoogle Scholar
Pazourková, L., Reli, M., Hundáková, M., Pazdziora, P., D., Martynková, G.S., & Lafdi, K., . (2019). Study of the Structure and antimicrobial Activity of Ca-Deficient Ceramics on Chlorhexidine Nanoclay Substrate. Materials. 12, 2996, 10.3390/ma12182996.CrossRefGoogle ScholarPubMed
Pejon, O. J. (1992). Mapeamento geotécnico da folha de Piracicaba-SP (escala 1:100.000): estudo de aspectos metodológicos, de caracterização e de apresentação dos atributos. Departamento de Geotecnia, Escola de Engenharia de São Carlos, USP, São Carlos, 2v. 224 pp. (Thesis).Google Scholar
Petrović, R., Levi, Z., Penavin-Škundric, J.. (2019). Adsorpcija amonijum jona i amonijaka iz vodene sredine na bentonitu i mordenitu. Glasnik Hemičara Tehnologa I Ekologa Republike Srpske. 15, 18, 10.7251/GHTE1915001P.Google Scholar
Petrovic, Z., Dugic, P., Aleksic, V., Begic, S., Sadadinovic, J., Micic, V., & Kljajic, N. (2014). Composition, structure and textural characteristics of domestic acid activated bentonite. Contemporary Materials, V-I, 133–39. https://doi.org/10.7251/cm.v1i5.1509.CrossRefGoogle Scholar
Pourabolghasem, H., Gharbanpour, M., Shayegh, R.. (2016). Antibacterial activity of copper-doped Mnt nanocomposites prepeared by alkaline ion exchange method. Journal of Physical. Science. 27, (2), 112, 10.21315/jps2016.27.2.1.Google Scholar
Qingshan, S., Shaozao, T., Quihui, Y., Zepeng, J., Yousheng, O., & Yiben, C. (2010). Preparation and characterization of antibacterial Zn2+ - exchanged Mnts. Journal of Wuhan University of Technology-Materials Science Edition, 94397212. https://doi.org/10.1007/s11595-010-0080-5.Google Scholar
Rather, W., Muhee, A., Bhat, R.A., Ul Haq, A., Nubi, S.U., Malik, H.U., Taifa, S.. (2020). Antimicrobial activity of copper sulphate and zinc sulphate on major mastitis causing bacteria in cattle. The Pharma Innovation Journal. 9, (4), 9395.Google Scholar
Ranđelović, M.S., Purenović, M.M., Matović, B.Z., Zarubica, A.R., Momčilović, M.Z., Purenović, J.M.. (2014). Structural, textural and adsorption characteristics of bentonite-based composite. Microporous and Mesoporous Materials. 195, 6774, 10.1016/j.micromeso.2014.03.031.CrossRefGoogle Scholar
Roy, A., Joshi, M.. (2018). Enhancing antibacterial properties of polypropylene/Cu-MMT nanocomposites filaments through sheath-core morphology. Polymer International. 67, (7), 917924, 10.1002/pi.5580.Google Scholar
Russell, J.D., Farmer, V.C.. (1964). Infra-red spectroscopic study of the dehydration of montmorillonite and saponite. Clay Minerals Bulletin. 5, (32), 443464, 10.1180/claymin.1964.005.32.04.CrossRefGoogle Scholar
Sadhu, S.D., Bhowmick, A.K.. (2004). Preparation and properties of styrene–butadiene rubber based nanocomposites: The influence of the structural and processing parameters. Journal of Applied Polymer Science. 92, 698709, 10.1002/app.13673.CrossRefGoogle Scholar
Şahiner, A., Özdemir, G., Bulut, T.H., Yapar, S.. (2022). Synthesis and Characterization of Non-leaching Inorgano- and Organo-montmorillonites and their Bactericidal Properties Against Streptococcus mutans. Clays and Clay Minerals. 70, 481491, 10.1007/s42860-022-00198-1.CrossRefGoogle Scholar
Sanchez-Lopez, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A.L., Galindo, R., Cano, A., Espinia, M., Ettcheto, M., Camins, A., Silva, A.M., Durazzo, A., Santini, A., Garcia, M.L., Souto, E.B.. (2020). Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 10, (2), 292, 10.3390/nano10020292.CrossRefGoogle ScholarPubMed
Söderberg, T.A., Sunzel, B., Holm, S., Elmros, T., Hallmans, G., Sjöberg, S.. (1990). Antibacterial Effect of Zinc Oxide in Vitro. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery. 24, (3), 193197, 10.3109/02844319009041278.CrossRefGoogle ScholarPubMed
Stodolak-Zych, E., Kurpanik, R., Dzierzkowska, E., Gajek, M., Zych, K., Gryn, K., Rapacz-Kmita, A.. (2021). Effect of Mnt and gentamicin addition on the properties of electrospun polycarpone fibers. Materials. 14, 6905, 10.3390/ma14226905.CrossRefGoogle Scholar
Sugarman, B.. (1983). Zinc and infection. Reviews of Infectious Diseases. 5, 138147, 10.1093/clinids/5.1.137.CrossRefGoogle ScholarPubMed
Surjawidjaja, J.E., Hidayat, A., Lesmana, M.. (2004). Growth inhibition of enteric pathogens by zinc sulfate: An in vitro study. Medical Principles and Practice. 13, 286289, 10.1159/000079529.CrossRefGoogle ScholarPubMed
Tan, S.-Z., Zhang, K.-H., Zhang, L.-L., Xie, Y.-S., Liu, Y.-L.. (2008). Preparation and characterisation of the antibacterial Zn2+ or/and Ce3+ loaded montmorillonites. Chinese Journal of Chemistry. 26, (5), 865869, 10.1002/cjoc.200890160.CrossRefGoogle Scholar
Tong, G., Yulong, M., Peng, G., Zirong, X.. (2005). Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Veterinary Microbiology. 105, (2), 113122, 10.1016/j.vetmic.2004.11.003.CrossRefGoogle ScholarPubMed
Toor, M.K.. (2010). Enhancing adsorption capacity of bentonite for dye removal: Physiochemical modification and characterization. University of Adelaide Masters Thesis,.Google Scholar
Tyagi, B., Chudasama, C.D., Jasra, R.V.. (2006). Determination of structural modification in acid activated Mnt clay by FT-IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 64, (2), 273278, 10.1016/j.saa.2005.07.018.CrossRefGoogle Scholar
Uddin, F. (2013). Studies in finishing effects of clay mineral in polymers and synthetic fibers. Advances in Material Science and Engineering, 243515. https://doi.org/10.1155/2013/243515.Google Scholar
VDG P69. (1999). Bindemittelprüfung - Prüfung von Bindetonen. Technical report.Google Scholar
Vuković, Z., Milutinović-Nikolić, A., Krstić, J., Abu-Rabi, A., Novaković, T., Jovanović, D.. (2005). The Influence of Acid Treatment on the Nanostructure and Textural Properties of Bentonite Clays. Materials Science Forum. 494, 339344, 10.4028/www.scientific.net/msf.494.339.CrossRefGoogle Scholar
Williams, L.B.. (2019). Natural antibacterial clays: historical uses and modern advances. Clays and Clay Mineral. 67, 724, 10.1007/s42860-018-0002-8.CrossRefGoogle Scholar
Wilson, S. A., Laing, R. M., Tan, E., Wilson, C. A., Arachchige, P. S. G., Gordon, K. C., & Fraser-Miller, S. J. (2023). Determining deposits on knit fabrics, yarns, and fibers, from sensor-related treatments. The Journal of The Textile Institute. https://doi.org/10.1080/00405000.2023.2221427.CrossRefGoogle Scholar
Zou, Y.-H., Wand, J., Cui, L.-Y., Zeng, R.-C., Wand, Q.-Z., Han, Q.-X., Qiu, J., Chen, X.-B., Chen, D.-C., Guan, S.-K., Zheng, Y.-F.. (2019). Corrosion resistance and antibacterial activity of zinc-loaded Mnt coatings on biodegradable magnesium alloy AZ31. Acta Biomaterialia. 98, 196214, 10.1016/j.actbio.2019.05.069.CrossRefGoogle Scholar