Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-15T07:50:28.909Z Has data issue: false hasContentIssue false

The Titanomagnetite to Titanomaghemite Conversion in a Weathered Basalt Profile From Southern Paraná Basin, Brazil

Published online by Cambridge University Press:  01 January 2024

Marisa T. Garcia de Oliveira*
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91509-900 Porto Alegre, Brazil
Milton L. L. Formoso
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91509-900 Porto Alegre, Brazil
Moacir Indio da Costa Jr
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonççalves, 9500, 91501-970, Porto Alegre, Brazil
Alain Meunier
Affiliation:
Hydrasa UMR 6532 CNRS – University of Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
*
*E-mail address of corresponding author: marisa.oliveira@ufrgs.br

Abstract

This study of magnetic minerals in a weathering profile developed on plateau basalts of the subtropical southern Paraná Basin explores the evolution of titanomagnetite to titanomaghemite. Six samples studied by optical microscopy, X-ray diffraction (XRD), electron microprobe, Mössbauer spectroscopy (MS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) support the interpretations.

The profile studied has two major parts: an upper, porous red-clay Latosol, ∼2–8 m deep, separated by a stone line from an underlying alterite which has two different facies — its argillaceous alterite consists of a clayey matrix with a well-developed fissure system whereas the underlying boulder alterite consists of rock cores surrounded by highly-porous cortexes of Al-goethite.

Optical microscopy showed the titanomagnetite-titanomaghem ite changes in color and shape through the profile. The decrease in the lattice parameter a of the magnetic separates from the rock cores to the alterite facies was detected by XRD. Mössbauer spectroscopy identified non-stoichiometric magnetite in the rock cores and Ti-substituted maghemite in the argillaceous alterite. Chemical analysis of the titanomagnetite-titanomaghe mite grains showed that the relative proportions of TiO2 and Fe2O3 vary in the different weathering facies. By SEM and EDS we also detected the presence of minor components as Si, Al, Ca, K, Mg and Mn.

These results led to the interpretation that the titanomagnetites from the fresh Parana basalts, located in the subtropical zone of Brazil, are unstable and gradually change to titanomaghemites. The evolution of these magnetic minerals is registered in the weathering facies related to climatic changes throughout geological time.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimoto, S. and Katzura, T., (1959) Magneto-chemical study of the generalized titanomagnetite in volcanic rocks Journal of Geomagnetism and Geoelectricity 3 6990 10.5636/jgg.10.69.CrossRefGoogle Scholar
Allan, J.E.M. Coey, J.M.D. Sanders, I.S. Schwertmann, U. Friedrich, G. and Wiechowski, A., (1989) An occurrence of fully-oxidized natural titanomaghemite in basalt Mineralogical Magazine 53 299304 10.1180/minmag.1989.053.371.04.CrossRefGoogle Scholar
Azzároff, L.V. and Buerger, M.J., (1958) The Powder Method in X-ray Crystallography New York McGraw-Hill Book Company 342 pp.Google Scholar
Bancroft, G.M. (1973) Mössbauer Spectroscopy — an Introduction for Inorganic Chemists and Geochemists. McGraw-Hill Book Company (UK) Limited, p. 168177.Google Scholar
Basta, E.Z., (1959) Some mineralogical relationship in the system Fe2O3-Fe3O4 and the composition of titanomaghemite Economic Geology 54 698719 10.2113/gsecongeo.54.4.698.CrossRefGoogle Scholar
Bellieni, G. Comin-Chiaramonti, P. Marques, L.S. Martinez, L. Melfi, A.J. Pacca, I.G. and Piccirillo, E., (1986) Petrogenetic aspects of acid and basaltic lavas from Parana plateau (Brazil): geological, mineralogical and petrochemical relationships Journal of Petrology 27 915944 10.1093/petrology/27.4.915.CrossRefGoogle Scholar
Bellieni, E.M. Comin-Chiaramonti, P. Bellieni, G. Civetta, L. Marques, L.S. Melfi, A.J. Petrini, R. Raposo, M.I.B. Stolfa, D., Piccirillo, E.M. and Melfi, A.J., (1988) Petrogenetic aspects of continental flood basalt-rhyolite suites from the Paraná Basin (Brazil) The Mesozoic Flood Volcanism of the Parana Basin, Petrogenetic and Geophysical Aspects São Paulo, Brazil Instituto Astronomico e Geofísico 179 205.Google Scholar
Camargo, M.N. Klamt, E. and Kauffman, J.H.B., (1987) Classificação de solos usada em levantamentos pedológicos no Brasil Boletim Informativo Sociedade Brasileira de Ciência do Solo. Campinas 12 11 33.Google Scholar
Collyer, S. Grimes, N.W. Vaughan, D.J. and Longworth, G., (1988) Studies of the crystal structure and crystal chemistry of titanomaghemite American Mineralogist 73 153 160.Google Scholar
Comin-Chiaramonti, P. Bellieni, G. Piccirillo, E.M. Melfi, A.J., Piccirillo, E.M. and Melfi, A.J., (1988) Classification and petrography of continental stratoid volcanics and related intrusives from the Paranai Basin (Brazil) The Mesozoic Flood Volcanism of the Parana Basin, Petrogenetic and Geophysical Aspects São Paulo, Brazil Instituto Astronômico e Geofísico 47 78.Google Scholar
Cornell, R.M. and Schwertmann, U., (1996) The Iron Oxides. Structures, Properties, Reactions, Occurrence and Uses Weinheim, Germany VCH 573 pp.Google Scholar
da Costa, G.M. de Grave, E. Bowen, L.H. and Vandenberghe, R.E., (1994) The center shift in Mössbauer spectra of maghemite and aluminum maghemites Clays and Clay Minerals 42 628633 10.1346/CCMN.1994.0420515.CrossRefGoogle Scholar
da Costa, G.M. de Grave, E. Bowen, L.H. De Bakker, P.M.A. and Vanderberghe, R.E., (1995) Variable-temperature Mössbauer spectroscopy of nanosized maghemite and Al-substituted maghemites Clays and Clay Minerals 43 562568 10.1346/CCMN.1995.0430506.CrossRefGoogle Scholar
da Costa, G.M. de Grave, E. De Bakker, P.M.A. and Vandenberghe, R.E., (1995) Influence of non stoichiometry and the presence of maghemite on the Mössbauer spectrum of magnetite Clays and Clay Minerals 43 656668 10.1346/CCMN.1995.0430602.CrossRefGoogle Scholar
de Oliveira, M.T.G. Formoso, M.L.L. Trescases, J.J. and Meunier, A., (1998) Clay mineral facies and lateritization in basalts of the southeastern Paraná Basin, Brazil Journal of South American Earth Sciences 11 365377 10.1016/S0895-9811(98)00030-3.CrossRefGoogle Scholar
Didier, P. Perret, D. Tardy, Y. and Nahon, D., (1985) Equilibres entre kaolinites ferriféres, goethites alumineuses et hématites alumineuses dans les systémes cuirassés. Rôle de l’activité de l’eau et de la taille des pores Science Géologique Bulletin 38 383397 10.3406/sgeol.1985.1715.CrossRefGoogle Scholar
EMBRAPA Empresa Brasileira de Pesquisa Agropecuária, Serviço nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ) Sistema Brasileiro de Classificação de Solos: 3. Aproximação (1988) Brazil Rio de Janeiro 122 pp. (Mimeografado).Google Scholar
EMBRAPA Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ) Sistema Brasileiro de Classificação de Solos, Brasília (1999) Rio de Janeiro, Embrapa Solos Embrapa Produção de Informação 412 pp.Google Scholar
Fabris, J.D. Coey, J.M.D. and da Mussel, W.N., (1998) Magnetic soils from mafic lithodomains in Brazil Hyperfine Interactions 113 249258 10.1023/A:1012679801308.CrossRefGoogle Scholar
Fitzpatrick, E.A., (1984) Micromorphology of Soils New York Chapman & Hall 10.1007/978-94-009-5544-8 433 pp.CrossRefGoogle Scholar
Fitzpatrick, R.W. Le Roux, J. and Sumner, M.E., (1975) Mineralo-chemical studies on titaniferous red soils of varying base status and structure Proceedings of the 6th Congress of the Soil Science Society of South Africa (Blyde River) Pretoria Soil Science Society of South Africa 344 375.Google Scholar
Fitzpatrick, R.W. Le Roux, J. and Bailey, S.W., (1975) Pedogenic and solid solution studies on iron titanium oxides Proceedings of the International Clay Conference, Mexico City, 1975 Willmette, Illinois Applied Publishing 585 599.Google Scholar
Frost, B.R. Lindsley, D.H. and Lindsley, D.H., (1991) Occurrence of iron titanium oxides in igneous rocks Oxide Minerals: Petrologic and Magnetic Significance Washington, D.C. Mineralogical Society of America 433462 10.1515/9781501508684-015 Reviews in Mineralogy 25 .CrossRefGoogle Scholar
Gonçalves, N.M.M., (1987) Transformações Mineralógicas e Estruturais relacionadas a Alteração Hidrotermal e Intempérica de Rochas Vulcânicas Básicas da Bacia do Paraná Setentrional–Região de Ribeirão Preto — S.P. Brazil Brazil Universidade de São Paulo 212 pp.Google Scholar
Goulart, A.T. Fabris, J.D. Jesus Filho, M.F. Coey, J.M.D. da Costa, J.M. and de Grave, E., (1998) Iron oxides in a soil developed from basalt Clays and Clay Minerals 46 369378 10.1346/CCMN.1998.0460402.CrossRefGoogle Scholar
Haggerty, S.E. and Lindsley, D.H., (1991) Oxide textures — a mini atlas Oxide Minerals: Petrologic and Magnetic Significance Washington, D.C. Mineralogical Society of America 129137 10.1515/9781501508684-008 Reviews in Mineralogy 25 .CrossRefGoogle Scholar
Hamdeh, H.H. Barghout, K. Ho, J.C. Shand, P.M. and Miller, L.L., (1999) A Mössbauer evaluation of cation distribution in titanomagnetites Journal of Magnetism and Magnetic Materials 191 7278 10.1016/S0304-8853(98)00340-0.CrossRefGoogle Scholar
Joint Committee on Powder Diffraction — International Center for Diffraction Data Standards, Copyright (1989), Powder Diffraction Files -2, PDF 391346.Google Scholar
Krause, J.C. Schaf, J. da Costa, M.I. Jr. and Paduani, C., (2000) Effects of composition and short-range order on the magnetic moments of Fe in Fe1−xVx alloys Physical Review B 61 61966204 10.1103/PhysRevB.61.6196.CrossRefGoogle Scholar
Mijovilovich, A. Morras, H. Saragovi, C. Santana, G.P. and Fabris, J.D., (1998) Magnetic fraction of an Ultisol from Misiones, Argentina Hyperfine Interactions C 3 332 335.Google Scholar
da Mussel, W.N. Fabris, J.D. and Coey, J.M.D., (1998) Titanomaghemites obtained by oxidation of natural titanomagnetites Hyperfine Interactions C 3 358 351.Google Scholar
Picirillo, E.M. Comin Chiaramonti, P. Melfi, A.J. Stolfa, D. Bellieni, G. Marques, L.S. Giaretta, A. Nardy, A.J.R. Pinese, J.P.P. Raposo, M.I.B. Roisenberg, A., Piccirillo, E.M. and Melfi, A.J., (1988) Petrochemistry of continental flood basalt-rhyolite suites and related intrusives from the Paraná Basin (Brazil) The Mesozoic Flood Volcanism of the Paraná Basin, Petrogenetic and Geophysical Aspects São Paulo, Brazil Instituto Astronômico e Geofísico 107 156.Google Scholar
Pinto, M.C.F. Fabris, J.D. de Jesus Filho, M.F. Coey, J.M.D. da Mussel, W.N. and Goulart, A.T., (1997) Iron-rich spinels from Brazilian soils Hyperfine Interactions 110 2332 10.1023/A:1012619331408.Google Scholar
Pinto, M.C.F. Fabris, J.D. Goulart, A.T. and Santana, G.P., (1998) Pedogenetic instability of magnetite in mafic lithology Hyperfine Interactions C 3 325 327.Google Scholar
Potter, R.O. and Kämpf, N., (1981) Argilo-minerais e óxidos de ferro em cambissolos e latossolos sob regime climatico térmico údico no Rio Grande do Sul Revista Brasileira de Ciência do Solo 5 153 159.Google Scholar
Readman, P.W. and O’Reilly, W., (1970) The synthesis and inversion of non-stoichiometric titanomagnetites Physics of the Earth and Planetary Interiors 4 121128 10.1016/0031-9201(71)90007-0.CrossRefGoogle Scholar
Resende, M. Curi, N. de Resende, S.B. and Corrêa, G.F., (1995) Pedologia: Base para Distinção de Ambientes Viçosa (MG, Brazil) NEPUT 304 pp.Google Scholar
Sanver, M. and O’Reilly, W., (1970) The identification of naturally occurring non-stoichiometric titanomagnetites Physics of the Earth and Planetary Interiors 2 166174 10.1016/0031-9201(70)90004-X.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J.W. Goodman, B.A. and Schwertmann, U., (1988) Ocurrence and formation of iron oxides in various pedoenvironments Iron in Soils and Clay Minerals Dordrecht, The Netherlands D.Reidel Publishing Company 267302 10.1007/978-94-009-4007-9_11.CrossRefGoogle Scholar
Singer, M.J. Bowen, L.H. Verosub, K.L. Fine, P. and Tenpas, J., (1995) Mössbauer spectroscopic evidence for citrate-bicarbonate-dithionite extraction of maghemite from soils Clays and Clay Minerals 43 17 10.1346/CCMN.1995.0430101.CrossRefGoogle Scholar
Soil Survey Staff, SCS, USDA, Keys to Soil Taxonomy (1998) 8th Washington, D.C. USDA.Google Scholar
Strahler, A., (1961) Physical Geography second New York John Wiley & Sons Inc. 534 pp.Google Scholar