Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-18T23:32:06.766Z Has data issue: false hasContentIssue false

Stability of Montmorillonite Edge Faces Studied Using First-Principles Calculations

Published online by Cambridge University Press:  01 January 2024

Hiroshi Sakuma*
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
Yukio Tachi
Affiliation:
Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki, 3191194, Japan
Kenji Yotsuji
Affiliation:
Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki, 3191194, Japan
Shigeru Suehara
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
Tatsumi Arima
Affiliation:
Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 8190395, Japan
Naoki Fujii
Affiliation:
Radioactive Waste Management Funding and Research Center, 6-4 Akashicho, Chuo-ku, Tokyo 1040044, Japan
Katsuyuki Kawamura
Affiliation:
Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama 7008530, Japan
Akira Honda
Affiliation:
Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki, 3191194, Japan
*
*E-mail address of corresponding author: sakuma.hiroshi@nims.go.jp

Abstract

The reactivity and stability of the edge faces of swelling clay minerals can be altered by layer charge and the stacking structure; however, these effects are poorly understood due to experimental limitations. The structure and stability of the montmorillonite {110}, {010}, {100}, and {130} edge faces with a layer charge of either y = 0.50 or y = 0.33 (e−/Si4O10) were investigated using first-principles calculations based on density functional theory. Stacked- and single-layer models were tested and compared to understand the effect of stacking on the stability of montmorillonite edge faces. Most stacked layers stabilize the edge faces by creating hydrogen bonds between the layers; therefore, the surface energy of the layers in the stacked-layer model is lower than in the single-layer model. This indicates that the estimates of edge face surface energy should consider the swelling conditions. Negative surface energies were calculated for these edge faces in the presence of chemisorbed water molecules. A high layer charge of 0.50 reduced the surface energy relative to that of the low layer charge of 0.33. The isomorphic substitution of Mg for Al increased the stability of interlayer Na ion positions, which were stable in the trigonal ring next to the Mg ions. The lowest surface energies of the {010} and {130} edge faces were characterized by the presence of Mg ions on edge faces, which had a strong cation adsorption site due to the local negative charge of the edges. The coordination numbers of O atoms around cations adsorbed to these edge faces were small in comparison to interlayers without water.

Type
Article
Copyright
Copyright © Clay Minerals Society 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bickmore, B.R. Rosso, K.M. Nagy, K.L. Cygan, R.T. and Tadanier, C.J., 2003 Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity Clays and Clay Minerals 51 359371.CrossRefGoogle Scholar
Bleam, W.F. Welhouse, G.J. and Janowiak, M.A., 1993 The surface Coulomb energy and proton Coulomb potentials of pyrophyllite {010}, {110}, {100}, and {130} edges Clays and Clay Minerals 41 305316.CrossRefGoogle Scholar
Bostick, B.C. Vairavamurthy, M.A. Karthikeyan, K.G. and Chorover, J., 2002 Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation Environmental Science & Technology 36 26702676.CrossRefGoogle ScholarPubMed
Bowers, G.M. Bish, D.L. and Kirkpatrick, R.J., 2008 H2O and cation structure and dynamics in expandable clays: 2H and 39K NMR investigations of hectorite Journal of Physical Chemistry C 112 64306438.CrossRefGoogle Scholar
Brown, I.D., 2002 The Chemical Bond in Inorganic Chemistry: The Bond Valence Model Oxford Oxford University Press 289.Google Scholar
Cheng, L. Fenter, P. Nagy, K.L. Schlegel, M.L. and Sturchio, N.C., 2001 Molecular-scale density oscillations in water adjacent to a mica surface Physical Review Letters 87 156103.CrossRefGoogle ScholarPubMed
Churakov, S.V., 2006 Ab initio study of sorption on pyrophyllite: Structure and acidity of the edge sites Journal of Physical Chemistry B 110 41354146.CrossRefGoogle ScholarPubMed
Churakov, S.V., 2007 Structure and dynamics of the water films confined between edges of pyrophyllite: A first principle study Geochimica et Cosmochimica Acta 71 11301144.CrossRefGoogle Scholar
Fan, Q.H. Tanaka, M. Tanaka, K. Sakaguchi, A. and Takahashi, Y., 2014 An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility Geochimica et Cosmochimica Acta 135 4965.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I: Montmorillonite hydration proper t i e s American Mineralogist 90 13581374.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Michot, L.J. and Robert, J.L., 2010 Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge Part 1. Results from X-ray diffraction profile modeling. Journal of Physical Chemistry C 114 45154526.Google Scholar
Giannozzi, P. Baroni, S. Bonini, N. Calandra, M. Car, R. Cavazzoni, C. Ceresoli, D. Chiarotti, G.L. Cococcioni, M. Dabo, I. Dal Corso, A. de Gironcoli, S. Fabris, S. Fratesi, G. Gebauer, R. Gerstmann, U. Gougoussis, C. Kokalj, A. Lazzeri, M. Martin-Samos, L. Marzari, N. Mauri, F. Mazzarello, R. Paolini, S. Pasquarello, A. Paulatto, L. Sbraccia, C. Scandolo, S. Sclauzero, G. Seitsonen, A.P. Smogunov, A. Umari, P. and Wentzcovitch, R.M., 2009 QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials Journal of Physics: Condensed Matter 21 395502.Google ScholarPubMed
Giese, R F Jr., 1973 Interlayer bonding in kaolinite, dickite and nacrite Clays and Clay Minerals 21 145149.CrossRefGoogle Scholar
Han, Y. Liu, W. and Chen, J., 2016 DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces Applied Surface Science 370 403409.CrossRefGoogle Scholar
Hartman, P., Hartman, P., 1973 Structure and morphology Crystal Growth: An Introduction Amsterdam North-Holland Publ. Co. 367402.Google Scholar
He, L. Lin, F. Li, X. Sui, H. and Xu, Z., 2015 Interfacial sciences in unconventional petroleum production: From fundamentals to applications Chemical Society Reviews 44 54465494.CrossRefGoogle ScholarPubMed
Hohenberg, P. and Kohn, W., 1964 Inhomogeneous electron gas Physical Review 136 864871.CrossRefGoogle Scholar
Kalinichev, A.G. Liu, X. and Cygan, R.T., 2016 Introduction to a special issue on molecular computer simulations of clays and clay-water interfaces: Recent progress, challenges, and opportunities Clays and Clay Minerals 64 335336.CrossRefGoogle Scholar
Kohn, W. and Sham, L.J., 1965 Self-consistent equations including exchange and correlation effects Physical Review 140 11331138.CrossRefGoogle Scholar
Kremleva, A. Krüger, S. and Rösch, N., 2015 Uranyl adsorption at solvated edge surfaces of 2:1 smectites A density functional study. Physical Chemistry Chemical Physics 17 1375713768.CrossRefGoogle ScholarPubMed
Kremleva, A. and Krüger, S., 2016 Comparative computational study of Np(V) and U(VI) adsorption on (110) edge surfaces of montmorillonite Clays and Clay Minerals 64 438451.CrossRefGoogle Scholar
Kubicki, J.D. Schroeter, L.M. Itoh, M.J. Nguyen, B.N. and Apitz, S.E., 1999 Attenuated total reflectance Fouriertransform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces Geochimica et Cosmochimica Acta 63 27092725.CrossRefGoogle Scholar
Lee, S.S. Fenter, P. Nagy, K.L. and Sturchio, N.C., 2012 Monovalent ion adsorption at the muscovite (001)-solution interface: Relationships among ion coverage and speciation, interfacial water structure, and substrate relaxation Langmuir 28 86378650.CrossRefGoogle ScholarPubMed
Lew, B.W. Wolfrom, M.L. Max Goepp, R Jr., 1946 Chromatography of sugars and related polyhydroxy compounds Journal of the American Chemical Society 68 14491453.CrossRefGoogle ScholarPubMed
Liu, X. Lu, X. Meijer, E.J. Wang, R. and Zhou, H., 2012a Atomic-scale structures of interfaces between phyllosilicate edges and water Geochimica et Cosmochimica Acta 81 5668.CrossRefGoogle Scholar
Liu, X. Meijer, E.J. Lu, X. and Wang, R., 2012b First-principles molecular dynamics insight into Fe2+ complexes adsorbed on edge surfaces of clay minerals Clays and Clay Minerals 60 341347.CrossRefGoogle Scholar
Liu, X. Lu, X. Sprik, M. Cheng, J. Meijer, E.J. and Wang, R., 2013 Acidity of edge surface sites of montmorillonite and kaolinite Geochimica et Cosmochimica Acta 117 180190.CrossRefGoogle Scholar
Liu, X. Cheng, J. Sprik, M. Lu, X. and Wang, R., 2014 Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulat ions Geochimica et Cosmochimica Acta 140 410417.CrossRefGoogle Scholar
Łodziana, Z. Topsøe, N.-Y. and Nørskov, J.K., 2004 A negative surface energy for alumina Nature Materials 3 289293.CrossRefGoogle ScholarPubMed
Martins, D.M.S. Molinari, M. Gonçalves, M.A. Mirão, J.P. and Parker, S.C., 2014 Toward modeling clay mineral nanoparticles: The edge surfaces of pyrophyllite and their interaction with water Journal of Physical Chemistry C 118 2730827317.CrossRefGoogle Scholar
Mathur, A. Sharma, P. and Cammarata, R.C., 2005 Negative surface energy- clearing up confusion Nature Materials 4 186.CrossRefGoogle Scholar
Meunier, A., 2006 Why are clay minerals small? Clay Minerals 41 551566.CrossRefGoogle Scholar
Mohammed, M. and Babadagli, T., 2015 Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems Advances in Colloid and Interface Science 220 5477.CrossRefGoogle ScholarPubMed
Monkhorst, H.J. and Pack, J.D., 1976 Special points for Brillouin-zone integrations Physical Review B 13 51885192.CrossRefGoogle Scholar
Morodome, S. and Kawamura, K., 2011 In situ X-ray diffraction study of the swelling of montmorillonite as affected by exchangeable cations and temperature Clays and Clay Minerals 59 165175.CrossRefGoogle Scholar
Nakamura, Y. Yamagishi, A. Matumoto, S. Tohkubo, K. Ohtu, Y. and Yamaguchi, M., 1989 High-performance liquid chromatography for optical resolution on a column of an ion-exchange adduct of spherically shaped synthetic hectorite and optically active metal complexes Journal of Chromatography A 482 165173.CrossRefGoogle Scholar
Newton, A.G. and Sposito, G., 2015 Molecular dynamics simulations of pyrophyllite edge surfaces: Structure, surface energies, and solvent accessibility Clays and Clay Minerals 63 277289.CrossRefGoogle Scholar
Newton, A.G. Kwon, K.D. and Cheong, D., 2016 Edge structure of montmorillonite from atomistic simulations Minerals 6 25.CrossRefGoogle Scholar
Perdew, J.P. Burke, K. and Ernzerhof, M., 1996 Generalized gradient approximation made simple Physical Review Letters 77 38653868.CrossRefGoogle ScholarPubMed
Pintea, S. de Poel, W. de Jong, A.E.F. Vonk, V. van der Asdonk, P. Drnec, J. Balmes, O. Isern, H. Dufrane, T. Felici, R. and Vlieg, E., 2016 Solid-liquid interface structure of muscovite mica in CsCl and RbBr solutions Langmuir 32 1295512965.CrossRefGoogle ScholarPubMed
Rappe, A.M. Rabe, K.M. Kaxiras, E. and Joannopoulos, J.D., 1990 Optimized pseudopotentials Physical Review B 41 12271230.CrossRefGoogle ScholarPubMed
Ray, S.S., 2014 Recent trends and future outlooks in the field of clay-containing polymer nanocomposites Macromolecular Chemistry and Physics 215 11621179.CrossRefGoogle Scholar
Sakuma, H., 2013 Adhesion energy between mica surfaces: Implications for the frictional coefficient under dry and wet conditions Journal of Geophysical Research: Solid Earth 118 60666075.CrossRefGoogle Scholar
Sakuma, H., 2015 Interlayer bonding energy of Mg-chlorite: A density functional theory study Journal of Computer Chemistry, Japan 14 152154.CrossRefGoogle Scholar
Sakuma, H. and Suehara, S., 2015 Interlayer bonding energy of layered minerals: Implication for the relationship with friction coefficient Journal of Geophysical Research B: Solid Earth 120 22122219.CrossRefGoogle Scholar
Sakuma, H. Kondo, T. Nakao, H. Shiraki, K. and Kawamura, K., 2011 Structure of hydrated sodium ions and water molecules adsorbed on the mica / water interface The Journal of Physical Chemistry C 115 1595915964.CrossRefGoogle Scholar
Schlegel, M.L. Nagy, K.L. Fenter, P. Cheng, L. Sturchio, N.C. and Jacobsen, S.D., 2006 Cation sorption on the muscovite (001) surface in chloride solutions using highresolution X-ray reflectivity Geochimica et Cosmochimica Acta 70 35493565.CrossRefGoogle Scholar
Sun, B.N. and Baronnet, A., 1989a Hydrothermal growth of OH-phlogopite single crystals I Undoped growth medium. Journal of Crystal Growth 96 265276.CrossRefGoogle Scholar
Sun, B.N. and Baronnet, A., 1989b Hydrothermal growth of OH-phlogopite single crystals II. Role of Cr and Ti adsorption on crystal growth rates. Chemical Geology 78 301314.Google Scholar
Tachi, Y. and Yotsuji, K., 2014 Diffusion and sorption of Cs+, Na+, I and HTO in compacted sodium montmorillonite as a function of porewater salinity: Integrated sorption and diffusion model Geochimica et Cosmochimica Acta 132 7593.CrossRefGoogle Scholar
Tansho, M. Tamura, K. and Shimizu, T., 2016 Identification of multiple Cs+ adsorption sites in a hydroxy-interlayered vermiculite-like layered silicate through 133Cs MAS NMR analysis Chemistry Letters 45 13851387.CrossRefGoogle Scholar
Tazi, S. Rotenberg, B. Salanne, M. Sprik, M. and Sulpizi, M., 2012 Absolute acidity of clay edge sites from ab-initio simulations Geochimica et Cosmochimica Acta 94 111.CrossRefGoogle Scholar
Tournassat, C. Ferrage, E. Poinsignon, C. and Charlet, L., 2004 The titration of clay minerals: II Structure-based model and implications for clay reactivity. Journal of Colloid and Interface Science 273 234246.Google Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Minerals 19 177193.CrossRefGoogle Scholar
Voora, V.K. Al-Saidi, W.A. and Jordan, K.D., 2011 Density functional theory study of pyrophyllite and M-montmorillonites (M = Li, Na, K, Mg, and Ca): Role of dispersion interactions Journal of Physical Chemistry A 115 96959703.CrossRefGoogle Scholar
Welfare, H. Sposito, G. Skipper, N.T. Sutton, R. Park, S.-H. Soper, A.K. and Greathouse, J.A., 1999 Surface geochemistry of the clay minerals Proceedings of the National Academy of Sciences 96 33583364.Google Scholar
White, G.N. and Zelazny, L.W., 1988 Analysis and implications of the edge structure of dioctahedral phyllosilicates Clays and Clay Minerals 36 141146.CrossRefGoogle Scholar
Yamagishi, A. and Sato, H., 2012 Stereochemistry and molecular recognition on the surface of a smectite clay mineral Clays and Clay Minerals 60 411419.CrossRefGoogle Scholar
Zhang, C. Liu, X. Lu, X. Meijer, E.J. Wang, K. He, M. and Wang, R., 2016 Cadmium(II) complexes adsorbed on clay edge surfaces: Insight from first principles molecular dynamics simulation Clays and Clay Minerals 64 337347.CrossRefGoogle Scholar