Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T06:25:37.349Z Has data issue: false hasContentIssue false

Methylene Blue Adsorption on the Basal Surfaces of Kaolinite: Structure and Thermodynamics from Quantum and Classical Molecular Simulation

Published online by Cambridge University Press:  01 January 2024

Jeffery A. Greathouse*
Affiliation:
Geochemistry Department, Sandia National Laboratories, P.O. Box 5800, MS 0754, Albuquerque, NM 87185-0754, USA
Dawn L. Geatches
Affiliation:
Energy Resources Engineering, Earth Sciences, Stanford University, CA 94305-2220, USA
Darin Q. Pike
Affiliation:
Chemical and Biological Systems Department, Sandia National Laboratories, P.O. Box 5800, MS 0734, Albuquerque, NM 87185-0734, USA
H. Christopher Greenwell
Affiliation:
Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK
Cliff T. Johnston
Affiliation:
Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN, 47097, USA
Jennifer Wilcox
Affiliation:
Energy Resources Engineering, Earth Sciences, Stanford University, CA 94305-2220, USA
Randall T. Cygan
Affiliation:
Geochemistry Department, Sandia National Laboratories, P.O. Box 5800, MS 0754, Albuquerque, NM 87185-0754, USA
*
*E-mail address of corresponding author: jagreat@sandia.gov

Abstract

Organic dyes such as methylene blue (MB) are often used in the characterization of clays and related minerals, but details of the adsorption mechanisms of such dyes are only partially understood from spectroscopic data, which indicate the presence of monomers, dimers, and higher aggregates for varying mineral surfaces. A combination of quantum (density functional theory) and classical molecular simulation methods was used to provide molecular detail of such adsorption processes, specifically the adsorption of MB onto kaolinite basal surfaces. Slab models with vacuum-terminated surfaces were used to obtain detailed structural properties and binding energies at both levels of theory, while classical molecular dynamics simulations of aqueous pores were used to characterize MB adsorption at infinite dilution and at higher concentration in which MB dimers and one-dimensional chains formed. Results for the neutral MB molecules are compared with those for the corresponding cation. Simulations of the aqueous pore indicate preferred adsorption on the hydrophobic siloxane surface, while charge-balancing chloride ions adsorb at the aluminol surface. At infinite dilution and in the gas-phase models, MB adsorbs with its primary molecular plane parallel to the siloxane surface to enhance hydrophobic interactions. Sandwiched dimers and chains are oriented perpendicular to the surface to facilitate the strong hydrophobic intermolecular interactions. Compared with quantum results, the hybrid force field predicts a weaker MB adsorption energy but a stronger dimerization energy. The structure and energetics of adsorbed MB at infinite dilution are consistent with the gas-phase binding results, which indicate that monomer adsorption is driven by strong interfacial forces rather than by the hydration properties of the dye. These results inform spectroscopic studies of MB adsorption on mineral surfaces while also revealing critical areas for development of improved hybrid force fields.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avena, M.J. Valenti, L.E. Pfaffen, V. and De Pauli, C.P., 2001 Methylene blue dimerization does not interfere in surface-area measurements of kaolinite and soils Clays and Clay Minerals 49 168173.CrossRefGoogle Scholar
Becke, A.D., 1993 Density-functional thermochemistry. III. The role of exact exchange The Journal of Chemical Physics 98 56485652.CrossRefGoogle Scholar
Bish, D.L., 1993 Rietveld refinement of the kaolinite structure at 1.5 K Clays and Clay Minerals 41 738744.CrossRefGoogle Scholar
Brindley, G.W. and Thompson, T.D., 1970 Methylene blue absorption by montmorillonites. Determinations of surface areas and exchange capacities with different initial cation saturations (clay-organic studies XIX) Israel Journal of Chemistry 8 409415.CrossRefGoogle Scholar
Bučko, T. Lebègue, S. Hafner, J. and Ángyán, J.G., 2013 Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids Physical Review B 87 064110.CrossRefGoogle Scholar
Bujdak, J. Iyi, N. Kaneko, Y. and Sasai, R., 2003 Molecular orientation of methylene blue cations adsorbed on clay surfaces Clay Minerals 38 561572.CrossRefGoogle Scholar
Čapková, P. Malý, P. Pospíšil, M. Klika, Z. Weissmannová, H. and Weiss, Z., 2004 Effect of surface and interlayer structure on the fluorescence of rhodamine b-montmorillonite: Modeling and experiment Journal of Colloid and Interface Science 277 128137.CrossRefGoogle ScholarPubMed
Cenens, J. and Schoonheydt, R.A., 1988 Visible spectroscopy of methylene-blue on hectorite, Laponite-b, and barasym in aqueous suspension Clays and Clay Minerals 36 214224.CrossRefGoogle Scholar
Chagovets, V.V. Kosevich, M.V. Stepanian, S.G. Boryak, O.A. Shelkovsky, V.S. Orlov, V.V. Leontiev, V.S. Pokrovskiy, V.A. Adamowicz, L. and Karachevtsev, V.A., 2012 Noncovalent interaction of methylene blue with carbon nanotubes: Theoretical and mass spectrometry characterization Journal of Physical Chemistry C 116 2057920590.CrossRefGoogle Scholar
Clark, S.J. Segall, M.D. Pickard, C.J. Hasnip, P.J. Probert, M.J. Refson, K. and Payne, M.C., 2005 First principles methods using CASTEP Zeitschrift Fur Kristallographie 220 567570.Google Scholar
Croteau, T. Bertram, A.K. and Patey, G.N., 2008 Adsorption and structure of water on kaolinite surfaces: Possible insight into ice nucleation from grand canonical Monte Carlo calculations Journal of Physical Chemistry A 112 1070810712.CrossRefGoogle ScholarPubMed
Croteau, T. Bertram, A.K. and Patey, G.N., 2009 Simulation of water adsorption on kaolinite under atmospheric conditions Journal of Physical Chemistry A 113 78267833.CrossRefGoogle ScholarPubMed
Cygan, R.T. Liang, J.-J. and Kalinichev, A.G., 2004 Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field Journal of Physical Chemistry B 108 12551266.CrossRefGoogle Scholar
Dehez, F. Angyan, J.G. Gutierrez, I.S. Luque, F.J. Schulten, K. and Chipot, C., 2007 Modeling induction phenomena in intermolecular interactions with an ab initio force field Journal of Chemical Theory and Computation 3 19141926.CrossRefGoogle ScholarPubMed
Demichelis, R. Civalleri, B. Ferrabone, M. and Dovesi, R., 2010 On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates International Journal of Quantum Chemistry 110 406415.CrossRefGoogle Scholar
Enescu, M. Ridard, J. Gheorghe, V. and Levy, B., 2002 Electron transfer modeling in condensed phase by molecular dynamics simulation: Application to methylene blue-guanine complex in water The Journal of Physical Chemistry B 106 176184.CrossRefGoogle Scholar
Fafard, J. Lyubimova, O. Stoyanov, S.R. Dedzo, G.K. Gusarov, S. Kovalenko, A. and Detellier, C., 2013 Adsorption of indole on kaolinite in nonaqueous media: Organoclay preparation and characterization, and 3D-RISMKH molecular theory of solvation investigation Journal of Physical Chemistry C 117 1855618566.CrossRefGoogle Scholar
Ferrage, E. Sakharov, B.A. Michot, L.J. Delville, A. Bauer, A. Lanson, B. Grangeon, S. Frapper, G. Jiménez-Ruiz, M. and Cuello, G.J., 2011 Hydration properties and interlayer organization of water and ions in synthetic Nasmectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data The Journal of Physical Chemistry C 115 18671881.CrossRefGoogle Scholar
Geatches, D.L. Jacquet, A. Clark, S.J. and Greenwell, H.C., 2012 Monomer adsorption on kaolinite: Modeling the essential ingredients Journal of Physical Chemistry C 116 2236522374.CrossRefGoogle Scholar
Ghosh, D. and Bhattacharyya, K.G., 2002 Adsorption of methylene blue on kaolinite Applied Clay Science 20 295300.CrossRefGoogle Scholar
Grimme, S., 2006 Semiempirical GGA-type density functional constructed with a long-range dispersion correction Journal of Computational Chemistry 27 17871799.CrossRefGoogle ScholarPubMed
Grimme, S., 2008 Do special noncovalent pi-pi stacking interactions really exist? Angewandte Chemie-International Edition 47 34303434.CrossRefGoogle ScholarPubMed
Hang, P.T. and Brindley, G.W., 1970 Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII) Clays and Clay Minerals 18 203212.CrossRefGoogle Scholar
Haria, N.R. Grest, G.S. and Lorenz, C.D., 2013 Viscosity of nanoconfined water between hydroxyl basal surfaces of kaolinite: Classical simulation results Journal of Physical Chemistry C 117 60966104.CrossRefGoogle Scholar
Headen, T.F. and Boek, E.S., 2011 Potential of mean force calculation from molecular dynamics simulation of asphaltene molecules on a calcite surface Energy & Fuels 25 499502.CrossRefGoogle Scholar
Heinz, H. and Suter, U.W., 2004 Atomic charges for classical simulations of polar systems Journal of Physical Chemistry B 108 1834118352.CrossRefGoogle Scholar
Heinz, H. Lin, T.J. Mishra, R.K. and Emami, F.S., 2013 Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field Langmuir 29 17541765.CrossRefGoogle ScholarPubMed
Heister, K., 2014 The measurement of the specific surface area of soils by gas and polar liquid adsorption methods — limitations and potentials Geoderma 216 7587.CrossRefGoogle Scholar
Homem-de-Mello, P. Mennucci, B. Tomasi, J. and da Silva, A.B.F., 2005 The effects of solvation in the theoretical spectra of cationic dyes Theoretical Chemistry Accounts 113 274280.CrossRefGoogle Scholar
Hou, X.J. Li, H.Q. Li, S.P. and He, P., 2014 Theoretical study of the intercalation behavior of ethylene glycol on kaolinite Journal of Physical Chemistry C 118 2601726026.CrossRefGoogle Scholar
Jacobs, K.Y. and Schoonheydt, R.A., 1999 Spectroscopy of methylene blue-smectite suspensions Journal of Colloid and Interface Science 220 103111.CrossRefGoogle ScholarPubMed
Jacobs, K.Y. and Schoonheydt, R.A., 2001 Time dependence of the spectra of methylene blue-clay mineral suspensions Langmuir 17 51505155.CrossRefGoogle Scholar
Johnston, K., 2014 A van der Waals density functional study of the adsorption of ethanol on the alpha-alumina (0001) surface Surface Science 621 1622.CrossRefGoogle Scholar
Jorgensen, W.L. Madura, J.D. and Swenson, C.J., 1984 Optimized intermolecular potential functions for liquid hydrocarbons Journal of the American Chemical Society 106 66386646.CrossRefGoogle Scholar
Jorgensen, W.L. and Severance, D.L., 1990 Aromatic—aromatic interactions — free-energy profiles for the benzene dimer in water, chloroform, and liquid benzene Journal of the American Chemical Society 112 47684774.CrossRefGoogle Scholar
Jorgensen, W.L. and Tirado-Rives, J., 1988 The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin Journal of the American Chemical Society 110 16571666.CrossRefGoogle ScholarPubMed
Jorgensen, W.L. Maxwell, D.S. and Tirado-Rives, J., 1996 Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids Journal of the American Chemical Society 118 1122511236.CrossRefGoogle Scholar
Kerisit, S., 2011 Water structure at hematite—water interfaces Geochimica et Cosmochimica Acta 75 20432061.CrossRefGoogle Scholar
Kerisit, S. Liu, C. and Ilton, E.S., 2008 Molecular dynamics simulations of the orthoclase (001)- and (010)-water interfaces Geochimica et Cosmochimica Acta 72 14811497.CrossRefGoogle Scholar
Klebow, B. and Meleshyn, A., 2011 Aggregation of alkyltrimethylammonium ions at the cleaved muscovite micawater interface: A Monte Carlo study Langmuir 27 1296812976.CrossRefGoogle ScholarPubMed
Klika, Z. Weissmannova, H. Čapková, P. and Pospíšil, M., 2004 The rhodamine b intercalation of montmorillonite Journal of Colloid and Interface Science 275 243250.CrossRefGoogle ScholarPubMed
Klika, Z. Čapková, P. Horáková, P. Valašková, M. Malý, P. Macháň, R. and Pospíšil, M., 2007 Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue Journal of Colloid and Interface Science 311 1423.CrossRefGoogle ScholarPubMed
Klika, Z. Pustkova, P. Praus, P. Kovar, P. Pospíšil, M. Malý, P. Grygar, T. Kulhankova, L. and Čapková, P., 2009 Fluorescence of reduced charge montmorillonite complexes with methylene blue: Experiments and molecular modeling Journal of Colloid and Interface Science 339 416423.CrossRefGoogle ScholarPubMed
Kohn, W. and Sham, L.J., 1965 Quantum density oscillations in an inhomogeneous electron gas Physical Review 137 16971705.CrossRefGoogle Scholar
Kohn, W. and Sham, L.J., 1965 Self-consistent equations including exchange and correlation effects Physical Review 140 11331138.CrossRefGoogle Scholar
Kovar, P. Pospíšil, M. Malý, P. Klika, Z. Čapková, P. Horáková, P. and Valáškova, M., 2009 Molecular modeling of surface modification of Wyoming and Cheto montmorillonite by methylene blue Journal of Molecular Modeling 15 13911396.CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmuller, J., 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Physical Review B 54 11,16911,186.CrossRefGoogle ScholarPubMed
Lagaly, G. Ogawa, M. Dekany, I., Bergaya, F. and Lagaly, G., 2013 Clay mineralorganic interactions Handbook of Clay Science 2nd edition Amsterdam Elsevier.Google Scholar
Levy, B. and Enescu, M., 1998 Theoretical study of methylene blue: A new method to determine partial atomic charges; investigation of the interaction with guanine Journal of Molecular Structure:THEOCHEM 432 235245.CrossRefGoogle Scholar
Lofaj, M. and Bujdak, J., 2012 Detection of smectites in ppm and sub-ppm concentrations using dye molecule sensors Physics and Chemistry of Minerals 39 227237.CrossRefGoogle Scholar
Maček, M. Mauko, A. Madenovič, A. Majes, B. and Petkovšek, A., 2013 A comparison of methods used to characterize the soil-specific surface area of clays Applied Clay Science 83–84 144152.CrossRefGoogle Scholar
McDaniel, J.G. and Schmidt, J.R., 2013 Physically motivated force fields from symmetry-adapted perturbation theory The Journal of Physical Chemistry A 117 20532066.CrossRefGoogle ScholarPubMed
McNellis, E.R. Meyer, J. and Reuter, K., 2009 Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions Physical Review B 80 205414.CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D., 1976 Special points for Brillouin-zone integrations Physical Review B 13 51885192.CrossRefGoogle Scholar
Neumann, M.G. Gessner, F. Schmitt, C.C. and Sartori, R., 2002 Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension Journal of Colloid and Interface Science 255 254259.CrossRefGoogle Scholar
Oz, M. Lorke, D.E. Hasan, M. and Petroianu, G.A., 2011 Cellular and molecular actions of methylene blue in the nervous system Medicinal Research Reviews 31 93117.CrossRefGoogle ScholarPubMed
Payne, M.C. Teter, M.P. Allan, D.C. Arias, T.A. and Joannopoulos, J.D., 1992 Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients Reviews in Modern Physics 64 10451097.CrossRefGoogle Scholar
Perdew, J.P. Burke, K. and Ernzerhof, M., 1996 Generalized gradient approximation made simple Physical Review Letters 77 38653868.CrossRefGoogle ScholarPubMed
Perdih, F. and Perdih, A., 2011 Lignin selective dyes: Quantum-mechanical study of their characteristics Cellulose 18 11391150.CrossRefGoogle Scholar
Pfrommer, B.G. Cote, M. Louie, S.G. and Cohen, M.L., 1997 Relaxation of crystals with the quasi-Newton method Journal of Computational Physics 131 233240.CrossRefGoogle Scholar
Plimpton, S.J., Pollock, R., and Stevens, M. (1997) Particlemesh Ewald and rRESPA for parallel molecular dynamics simulations. Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, Minnesota, USA.Google Scholar
Praus, P. Veteška, M. and Pospíšil, M., 2011 Adsorption of phenol and aniline on natural and organically modified montmorillonite: Experiment and molecular modelling Molecular Simulation 37 964974.CrossRefGoogle Scholar
Quintao, A.D. Coutinho, K. and Canuto, S., 2002 Theoretical study of the hydrogen bond interaction between methylene blue and water and possible role on energy transfer for photodynamics International Journal of Quantum Chemistry 90 634640.CrossRefGoogle Scholar
Rai, B. Sathish, P. Tanwar, J. Pradip, Moon, K.S. and Fuerstenau, D.W., 2011 A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals Journal of Colloid and Interface Science 362 510516.CrossRefGoogle ScholarPubMed
Rytwo, G. Nir, S. and Margulies, L., 1995 Interactions of monovalent organic cations with montmorillonite: Adsorption studies and model calculations Soil Science Society of America Journal 59 554564.CrossRefGoogle Scholar
Schoonheydt, R.A. and Heughebaert, L., 1992 Clay adsorbed dyes — methylene-blue on Laponite Clay Minerals 27 91100.CrossRefGoogle Scholar
Shamay, E.S. Valley, N.A. Moore, F.G. and Richmond, G.L., 2013 Staying hydrated: The molecular journey of gaseous sulfur dioxide to a water surface Physical Chemistry Chemical Physics 15 68936902.CrossRefGoogle ScholarPubMed
Smith, D.R. and Dang, L.X., 1994 Computer simulations of NaCl association in polarizable water Journal of Chemical Physics 100 37573766.CrossRefGoogle Scholar
Tafipolsky, M. and Engels, B., 2011 Accurate intermolecular potentials with physically grounded electrostatics Journal of Chemical Theory and Computation 7 17911803.CrossRefGoogle ScholarPubMed
Teleman, O. Jonsson, B. and Engstrom, S., 1987 A molecular dynamics simulation of a water model with intramolecular degrees of freedom Molecular Physics 60 193203.CrossRefGoogle Scholar
Tenney, C.M. and Cygan, R.T., 2014 Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles Environmental Science & Technology 48 20352042.CrossRefGoogle ScholarPubMed
Tkatchenko, A. and Scheffler, M., 2009 Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data Physical Review Letters 102 073005.CrossRefGoogle Scholar
Tokarsky, J. Čapková, P. and Burda, J.V., 2012 Structure and stability of kaolinite/TiO2 nanocomposite: DFT and MM computations Journal of Molecular Modeling 18 26892698.CrossRefGoogle ScholarPubMed
Toth, R. Santese, F. Pereira, S.P. Nieto, D.R. Pricl, S. Fermeglia, M. and Posocco, P., 2012 Size and shape matter! A multiscale molecular simulation approach to polymer nanocomposites Journal of Materials Chemistry 22 53985409.CrossRefGoogle Scholar
Totton, T.S. Misquitta, A.J. and Kraft, M., 2010 A first principles development of a general anisotropic potential for polycyclic aromatic hydrocarbons Journal of Chemical Theory and Computation 6 683695.CrossRefGoogle ScholarPubMed
Tunega, D. Bučko, T. and Zaoui, A., 2012 Assessment of ten DFT methods in predicting structures of sheet silicates: Importance of dispersion corrections Journal of Chemical Physics 137 114105.CrossRefGoogle ScholarPubMed
Vanderbilt, D., 1990 Soft self-consistent pseudopotentials in a generalized eigenvalue formalism Physical Review B 41 78927895.CrossRefGoogle Scholar
Vasconcelos, I.F. Bunker, B.A. and Cygan, R.T., 2007 Molecular dynamics modeling of ion adsorption to the basal surfaces of kaolinite Journal of Physical Chemistry C 111 67536762.CrossRefGoogle Scholar
Wainwright, M., 2000 Methylene blue derivatives — suitable photoantimicrobials for blood product disinfection? International Journal of Antimicrobial Agents 16 381394.CrossRefGoogle ScholarPubMed
Wainwright, M. and Crossley, K.B., 2002 Methylene blue — a therapeutic dye for all seasons? Journal of Chemotherapy 14 431443.CrossRefGoogle ScholarPubMed
Wilson, N. and Muscat, J., 2002 The calculation of structural, elastic and phase stability properties of minerals using first principles techniques: A comparison of HF, DFT and hybrid functional treatments of exchange and correlation Molecular Simulation 28 903915.CrossRefGoogle Scholar
Yener, N. Bicer, C. Onal, M. and Sarikaya, Y., 2012 Simultaneous determination of cation exchange capacity and surface area of acid activated bentonite powders by methylene blue sorption Applied Surface Science 258 25342539.CrossRefGoogle Scholar
Yu, K.A. and Schmidt, J.R., 2011 Elucidating the crystal face- and hydration-dependent catalytic activity of hydrotalcites in biodiesel production Journal of Physical Chemistry C 115 18871898.CrossRefGoogle Scholar
Yu, C.-H. Newton, S.Q. Norman, M.A. Miller, D.M. Schafer, L. and Teppen, B.J., 2000 Molecular dynamics simulations of the adsorption of methylene blue at clay mineral surfaces Clays and Clay Minerals 48 665681.CrossRefGoogle Scholar
Yu, C.H. Newton, S.Q. Norman, M.A. Schafer, L. and Miller, D.M., 2003 Molecular dynamics simulations of adsorption of organic compounds at the clay mineral/aqueous solution interface Structural Chemistry 14 175185.CrossRefGoogle Scholar
Yukselen-Aksoy, Y. and Kaya, A., 2008 Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils Engineering Geology 102 3845.CrossRefGoogle Scholar
Zeitler, T.R. Greathouse, J.A. and Cygan, R.T., 2012 Effects of thermodynamic ensembles and mineral surfaces on interfacial water structure Physical Chemistry Chemical Physics 14 17281734.CrossRefGoogle ScholarPubMed