Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-24T03:26:30.261Z Has data issue: false hasContentIssue false

A Critical Textural Evolution Study of Zerovalent Iron/Montmorillonite Nanosized Heterostructures Under Various Iron Loadings

Published online by Cambridge University Press:  01 January 2024

Mingde Fan
Affiliation:
College of Environment and Resources, Inner Mongolia University, Hohhot 010021, China CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510460, China
Peng Yuan*
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510460, China
Faïza Bergaya
Affiliation:
CRMD CNRS-Université d’Orléans, 1b, Rue de la Férollerie, 45071 Orléans Cedex 2, France
Hongping He
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510460, China
Tianhu Chen
Affiliation:
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Jianxi Zhu
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510460, China
Dong Liu
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510460, China Graduate School of the Chinese Academy of Science, Beijing 100039, China
*
* E-mail address of corresponding author: yuanpeng@gig.ac.cn

Abstract

Heterostructures formed by nanoparticles hybridized with porous hosts are of great potential in many practical applications such as catalysis, adsorption, and environmental remediation, based on their intrinsic properties. The objectives of this study were to synthesize zerovalent iron nanoparticles/montmorillonite heterostructures and to investigate their textural evolution under different Fe loadings. Iron nanoparticles were hybridized with montmorillonite by impregnation of montmorillonite by ferric ions followed by chemical reduction with sodium borohydride in solution. These hybridized Fe nanoparticles were well dispersed on the montmorillonite surface, size adjustable, and resistant to oxidation under the protection of native Fe-oxide shells. The textural evolution of these heterostructures under various Fe loadings was investigated using nitrogen physisorption, X-ray diffraction, electron microscopy, and elemental analyses. As the Fe loadings increased, the total pore and mesopore volumes were almost unchanged; the total, micropore, and external surface areas as well as the micropore volume decreased; and the average pore diameter increased. These textural changes could be attributed to the filling of the interparticle pores of montmorillonite by a variable amount of Fe nanoparticles. In addition, with increasing Fe loadings, the mesoporous character was enhanced for these heterostructures. These fundamental results are important in understanding the structure of these heterostructures as well as in developing some novel applications in related fields.

Type
Article
Copyright
Copyright © Clay Minerals Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auerbach, S.M. Carrado, K.A. and Dutta, P.K., 2004 Handbook of Layered Materials New York Marcel Dekker.CrossRefGoogle Scholar
Benna, M. Kbir-Ariguib, N. Magnin, A. and Bergaya, F., 1999 Effect of pH on rheological properties of purified sodium bentonite suspensions Journal of Colloid and Interface Science 218 442455 10.1006/jcis.1999.6420.CrossRefGoogle ScholarPubMed
Bergaya, F. and Lagaly, G., 2006 General Introduction: Clays, Clay Minerals, and Clay Science Handbook of Clay Science 1 118 10.1016/S1572-4352(05)01001-9.CrossRefGoogle Scholar
Bergaya, F. Mandalia, T. and Amigouët, P., 2005 A brief survey on CLAYPEN and nanocomposites based on unmodified PE and organo-pillared clays Colloid & Polymer Science 283 773782 10.1007/s00396-004-1225-x.CrossRefGoogle Scholar
Bergaya, F., Theng, B.K.G., and Lagaly, G. (2006) Handbook of Clay Science. Developments in Clay Science, 1. Elsevier, Amsterdam.Google Scholar
Bomatí-Miguel, O. Tartaj, P. Morales, M.P. Bonville, P. Golla-Schindler, U. Zhao, X.Q. and Veintemillas-Verdaguer, S., 2006 Core-shell iron-iron oxide nanoparticles synthesized by laser-induced pyrolysis Small 2 14761483 10.1002/smll.200600209.CrossRefGoogle ScholarPubMed
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319 10.1021/ja01269a023.CrossRefGoogle Scholar
Brunauer, S. Deming, L.S. Deming, W.E. and Teller, E., 1940 On a theory of the van der Waals adsorption of gases Journal of the American Chemical Society 62 17231732 10.1021/ja01864a025.CrossRefGoogle Scholar
Cadene, A. Durand-Vidal, S. Turq, P. and Brendle, J., 2005 Study of individual Na-montmorillonite particles size, morphology, and apparent charge Journal of Colloid and Interface Science 285 719730 10.1016/j.jcis.2004.12.016.CrossRefGoogle ScholarPubMed
Clinard, C. Mandalia, T. Tchoubar, D. and Bergaya, F., 2003 HRTEM image filtration: nanostructural analysis of a pillared clay Clays and Clay Minerals 51 421429 10.1346/CCMN.2003.0510408.CrossRefGoogle Scholar
Drummy, L.F. Koerner, H. Farmer, K. Tan, A. Farmer, B.L. and Vaia, R.A., 2005 High-resolution electron microscopy of montmorillonite and montmorillonite/epoxy nanocomposites Journal of Physical Chemistry B 109 1786817878 10.1021/jp053133l.CrossRefGoogle ScholarPubMed
Elsayed, M.A. Hall, P.J. and Heslop, M.J., 2007 Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO2 activation Adsorption 13 299306 10.1007/s10450-007-9065-x.CrossRefGoogle Scholar
Fung, K.K. Qin, B.X. and Zhang, X.X., 2000 Passivation of α-Fe nanoparticle by epitaxial γ-Fe2O3 shell Materials Science and Engineering A 286 135138 10.1016/S0921-5093(00)00717-6.CrossRefGoogle Scholar
Gervasini, A., 1999 Characterization of the textural properties of metal loaded ZSM-5zeolites Applied Catalysis A: General 180 7182 10.1016/S0926-860X(98)00333-0.CrossRefGoogle Scholar
Gil, A. and Gandía, L.M., 2003 Microstructure and quantitative estimation of the micropore-size distribution of an alumina-pillared clay from nitrogen adsorption at 77 K and carbon dioxide adsorption at 273 K Chemical Engineering Science 58 305 93075 10.1016/S0009-2509(03)00182-9.CrossRefGoogle Scholar
Gregg, S.J. and Sing, K.S.W., 1982 Adsorption, Surface Area and Porosity London Academic Press.Google Scholar
Grigorieva, N.A. Grigoriev, S.V. Eckerlebe, H. Eliseev, A.A. Napolskii, K.S. Lukashin, A.V. and Tretyakov, Y.u.D., 2006 Magnetic properties of iron nanoparticles in mesoporous silica matrix Journal of Magnetism and Magnetic Materials 300 e342e345 10.1016/j.jmmm.2005.10.116.CrossRefGoogle Scholar
Groen, J.C. Peffer, L.A.A. and Pérez-Ramírez, J., 2003 Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis Microporous and Mesoporous Materials 60 117 10.1016/S1387-1811(03)00339-1.CrossRefGoogle Scholar
He, H. Zhou, Q. Martens, W.N. Kloprogge, T.J. Yuan, P. Xi, Y. Zhu, J. and Frost, R.L., 2006 Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics Clays and Clay Minerals 54 689696 10.1346/CCMN.2006.0540604.CrossRefGoogle Scholar
Huber, D.L., 2005 Synthesis, properties, and applications of iron nanoparticles Small 1 482501 10.1002/smll.200500006.CrossRefGoogle Scholar
Johnson, S.A. Brigham, E.S. Ollivier, P.J. and Mallouk, T.E., 1997 Effect of micropore topology on the structure and properties of zeolite polymer replicas Chemistry of Materials 9 24482458 10.1021/cm9703278.CrossRefGoogle Scholar
Király, Z. Dékány, I. Mastalir, and Bartök, M., 1996 In situ generation of palladium nanoparticles in smectite clays Journal of Catalysis 161 401408 10.1006/jcat.1996.0198.CrossRefGoogle Scholar
Lin, C.C.H. Sawada, J.A. Wu, L. Haastrup, T. and Kuznicki, S.M., 2009 Anion-controlled pore size of titanium silicate molecular sieves Journal of the American Chemical Society 131 609614 10.1021/ja806114z.CrossRefGoogle ScholarPubMed
Lourakis, M.I.A., 2005 A brief description of the Levenberg- Marquardt algorithm implemented by levmar Greece Institute of Computer Science Foundation for Research and Technology.Google Scholar
Lu, C.Y. Wei, M.C. Chang, S.H. and Wey, M.Y., 2009 Study of the activity and backscattered electron image of Pt/CNTs prepapared by the polyol process for flue gas purification Applied Catalysis A: General 354 5762 10.1016/j.apcata.2008.11.011.CrossRefGoogle Scholar
Mackenzie, R.C.A., 1951 Micromethod for determination of CEC of clay Journal of Colloid Science 6 219222.Google Scholar
Mastalir, Szöllösi, G.y. Kirá, L. Z. and Rázga, Z.s., 2002 Preparation and characterization of platinum nanoparticles immobilized in dihydrocinchonidine-modified montmorillonite and hectorite Applied Clay Science 22 916 10.1016/S0169-1317(02)00107-2.CrossRefGoogle Scholar
Mitsudome, T. Nose, K. Mori, K. Mizugaki, T. Ebitani, K. Jitsukawa, K. and Kaneda, K., 2007 Montmorilloniteentrapped sub-nanoordered Pd clusters as a heterogeneous catalyst for allylic substitution reactions Angewandte Chemie International Edition 46 32883290 10.1002/anie.200604644.CrossRefGoogle ScholarPubMed
Neaman, A. Guillaume, D. Pelletier, M. and Villiéras, F., 2003 The evolution of textural properties of Na/Cabentonite following hydrothermal treatment at 80 and 300°C in the presence of Fe and/or Fe oxides Clay Minerals 38 213223 10.1180/0009855033820090.CrossRefGoogle Scholar
Occelli, M.L. Landau, S.D. and Pinnavaia, T.J., 1987 Physicochemical properties of a delaminated clay cracking catalyst Journal of Catalysis 104 331338 10.1016/0021-9517(87)90365-4.CrossRefGoogle Scholar
Occelli, M.L. Gould, S.A.C. and Drake, B., 1994 Atomic scale imaging of pillared rectorite catalysts with the atomic force microscope Microporous Materials 2 205215 10.1016/0927-6513(93)E0052-I.CrossRefGoogle Scholar
Papp, S. Szél, J. Oszkö, A. and Dékány, I., 2004 Synthesis of polymer-stabilized nanosized rhodium particles in the interlayer space of layered silicates Chemistry of Materials 16 16741685 10.1021/cm0310667.CrossRefGoogle Scholar
Pinnavaia, T.J., 1983 Intercalated clay catalysts Science 220 365371 10.1126/science.220.4595.365.CrossRefGoogle ScholarPubMed
Pinnavaia, T.J. Rainey, V. Tzou, M.S. and White, J.W., 1984 Characterisation of pillared clays by neutron scattering Journal of Molecular Catalysis 27 213224 10.1016/0304-5102(84)85081-6.CrossRefGoogle Scholar
Pinnavaia, T.J. Tzou, M.S. Landau, S.D. and Raythatha, R.H., 1984 On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum Journal of Molecular Catalysis 27 195212 10.1016/0304-5102(84)85080-4.CrossRefGoogle Scholar
Quirke, N. and Tennison, S.R.R., 1996 The interpretation of pore size distributions of microporous carbons Carbon 34 12811286 10.1016/0008-6223(96)00099-1.CrossRefGoogle Scholar
Ramos-Tejada, M.M. Arroyo, F.J. Perea, R. and Durán, D.G., 2001 Scaling behavior of the rheological properties of montmorillonite suspensions: correlation between interparticle interaction and degree of flocculation Journal of Colloid and Interface Science 235 251259 10.1006/jcis.2000.7370.CrossRefGoogle ScholarPubMed
Rutherford, D.W. Chiou, C.T. and Eberl, D.D., 1997 Effects of exchanged cation on the microporosity of montmorillonite Clays and Clay Minerals 45 534543 10.1346/CCMN.1997.0450405.CrossRefGoogle Scholar
Sarathy, V. Salter, A.J. Nurmi, J.T. Johnson, G.O. Johnson, R.L. and Tratnyek, P.G., 2010 Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc Environmental Science & Technology 44 787793 10.1021/es902595j.CrossRefGoogle ScholarPubMed
Séquaris, J.M. Camara Decimavilla, S. and Corrales Ortega, J.A., 2002 Polyvinylpyrrolidone adsorption and structural studies on homoionic Li-, Na-, K-, and Cs-montmorillonite colloidal suspensions Journal of Colloid and Interface Science 252 93101 10.1006/jcis.2002.8422.CrossRefGoogle Scholar
Shinoda, T. Onaka, M. and Izumi, Y., 1995 Proposed models of mesopore structures in sulfuric acid-treated montmorillonites and K10 Chemistry Letters 24 495496 10.1246/cl.1995.495.CrossRefGoogle Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pierotti, R.A. Rouquerol, J. and Siemieniewska, T., 1985 Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure and Applied Chemistry 57 603619 10.1351/pac198557040603.CrossRefGoogle Scholar
Storck, S. Bretinger, H. and Maier, W.F., 1998 Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis Applied Catalysis A: General 174 137146 10.1016/S0926-860X(98)00164-1.CrossRefGoogle Scholar
Temuujin, J. Jadambaa, T.s. Burmaa, G. Erdenechimeg, S.h. Amarsanaa, J. and MacKenzie, K.J.D., 2004 Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia) Ceramics International 30 251255 10.1016/S0272-8842(03)00096-8.CrossRefGoogle Scholar
Tsiao, C.J. Carrado, K.A. and Botto, R.E., 1998 Investigation of the microporous structure of clays and pillared clays by 129Xe NMR Microporous and Mesoporous Materials 21 4551 10.1016/S1387-1811(97)00040-1.CrossRefGoogle Scholar
Wang, C.M. Baer, D.R. Thomas, L.E. Amonette, J.E. Antony, J. Qiang, Y. and Duscher, G., 2005 Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature Journal of Applied Physics 98 094308–094307 10.1063/1.2130890.CrossRefGoogle Scholar
Yan, J.M. Zhang, X.B. Han, S. Shioyama, H. and Xu, Q., 2008 Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage Angewandte Chemie International Edition 47 22872289 10.1002/anie.200704943.CrossRefGoogle ScholarPubMed
Yuan, P. Yin, X. He, H. Yang, D. Wang, L. and Zhu, J., 2006 Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by the TiCl4 hydrolysis method Microporous and Mesoporous Materials 93 240247 10.1016/j.micromeso.2006.03.002.CrossRefGoogle Scholar
Yuan, P. He, H. Bergaya, F. Wu, D. Zhou, Q. and Zhu, J., 2006 Synthesis and characterization of delaminated ironpillared clay with meso-microporous structure Microporous and Mesoporous Materials 88 815 10.1016/j.micromeso.2005.08.022.CrossRefGoogle Scholar
Yuan, P. Fan, M. Yang, D. He, H. Liu, D. Yuan, A. Zhu, J. and Chen, T., 2009 Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions Journal of Hazardous Materials 166 821829 10.1016/j.jhazmat.2008.11.083.CrossRefGoogle ScholarPubMed
Zeng, M. Tang, Y. Mi, J. and Zhong, C., 2009 Improved direct correlation function for density functional theory analysis of pore size distributions Journal of Physical Chemistry C 113 1742817436 10.1021/jp902803t.CrossRefGoogle Scholar
Zhang, L. and Manthiram, A., 1996 Ambient temperature synthesis of fine metal particles in montmorillonite clay and their magnetic properties NanoStructured Materials 7 437451 10.1016/0965-9773(96)00015-3.CrossRefGoogle Scholar