Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T21:34:14.347Z Has data issue: false hasContentIssue false

Competitive Adsorption of Uranyl and Toxic Trace Metal Ions at MFe2O4-montmorillonite (M = Mn, Fe, Zn, Co, or Ni) Interfaces

Published online by Cambridge University Press:  01 January 2024

Xiaoqiang Jiang
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Jianan Nie
Affiliation:
Institute of Gem and Material Technology, Hebei GEO University, Shijiazhuang 050000 Hebei, China
Liang Bian*
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China Institute of Gem and Material Technology, Hebei GEO University, Shijiazhuang 050000 Hebei, China
Faqin Dong
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Mianxin Song*
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Yi He
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Huichao He
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Zhiqin Zheng
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Tingting Huo
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Bowen Li
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Nelson Belzile
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Shuhui Sun
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
Hao Zou
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, South West University of Science and Technology, Mianyang 621010 Sichuan, China
*
*E-mail address of corresponding author: bianliang@swust.edu.cn
*E-mail address of corresponding author: songmianxin@swust.edu.cn

Abstract

Adsorption of uranyl (UO22+) ions to mineral surfaces is a potentially effective method for removing this hazardous metal from water, but other toxic trace metal ions (Xn+: Rb+, Sr2+, Cr3+, Mn2+, Ni2+, Zn2+, Cd2+) in uraniferous wastewaters compete with UO22+ for adsorption sites and thus may diminish the capacity of adsorbents to sequester UO22+. A better understanding of competitive adsorption among these metal ions and the development of better adsorbents are, therefore, of critical importance. The purpose of the present study was to synthesize and characterize magnetic adsorbents, consisting of MFe2O4 (M = Mn, Fe, Zn, Co, or Ni) nanoparticles synthesized on montmorillonite (Mnt) edge sites, and to investigate their use as adsorbents for UO22+, including competitive adsorption with trace metal ions. Selective adsorption was studied using Langmuir, Freundlich, and Dubinin-Radushkevich isotherms, and the results showed that Xn+ ions were adsorbed primarily on MFe2O4-montmorillonite surfaces, and the UO22+ ions were adsorbed on the interfaces between montmorillonite edge surfaces and MFe2O4 nanoparticles. Using the Freundlich model, the interface adsorption capacity of UO22+ reached 25.1 mg·g–1 in mixed solution. Further, the UO22+ and Cr3+ ions had a redox reaction on the interfaces with synergistic adsorption. Herein, the adsorption capacity of Cr3+ was 60.2 mg·g–1 using the Freundlich isotherm. The results demonstrated that the MFe2O4-montmorillonite with highly selective adsorption of UO22+ ions is applicable to UO22+ treatment in the presence of toxic trace metal ions.

Graphical abstract

Type
Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the World Forum on Industrial Minerals, held in Qing Yang, China, October 2018

References

Ai, Y. J. Liu, Y. Lan, W. Y. Jin, J. R. Xing, J. L. Zou, Y. D., The effect of pH on the U(VI) sorption on graphene oxide (GO): A Theoretical Study Chemical Engineering Journal 2018 343 460466.CrossRefGoogle Scholar
Bedelean, H. Măicăneanu, A. Burcă, S. Stanca, M., Removal of heavy metal ions from wastewaters using natural clays Clay Minerals 2009 44 487495.CrossRefGoogle Scholar
Bhattacharyya, K. G. Gupta, S. S., Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review Advances in Colloid and Interface Science 2008 140 114131.CrossRefGoogle ScholarPubMed
Bian, L. Li, H. L. Li, Y. J. Nie, J. N. Dong, F. Q. Dong, H. L. Bian, L. Li, H. Li, Y., Enhanced photovoltage response of hematite-X-ferrite interfaces (X = Cr, Mn, Co, or Ni) Nanoscale Research Letters 2017 12 136.CrossRefGoogle ScholarPubMed
Bian, L. Song, M. Dong, F. Duan, T. Xu, J. Li, W., DFT and two-dimensional correlation analysis for evaluating the oxygen defect mechanism of low-density 4f (or 5f) elements interacting with Ca-Mt RSC Advances 2015 5 2860128610.CrossRefGoogle Scholar
Brigatti, M. F., Galán, E., & Theng, B. K. G. (2013). Structures and mineralogy of clay minerals. Pp. 1986 in: Developments in Clay Science (Bergaya, F., Theng, B.K.G. and Lagaly, G., editors). Elsevier, Amsterdam 1, 19–86.Google Scholar
Burns, P. C. Ewing, R. C. Navrotsky, A., Nuclear fuel in a reactor accident Science 2012 335 11841188.CrossRefGoogle Scholar
Campos, B. Aguilar-Carrillo, J. Algarra, M. Gonçalves, M. A. Rodríguez-Castellón, E. Silva, J. C., Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material Applied Clay Science 2013 85 5363.CrossRefGoogle Scholar
Chang, J. Ma, J. Ma, Q. Zhang, D. Qiao, N. Hu, M., Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite Applied Clay Science 2015 119 132140.CrossRefGoogle Scholar
Chen, J. Wen, W. Kong, L. Tian, S. Ding, F. Xiong, Y., Magnetically separable and durable MnFe2O4 for efficient catalytic ozonation of organic pollutants Industrial & Engineering Chemistry Research 2014 53 62976306.CrossRefGoogle Scholar
Chen, H. Wang, Y. Zhao, W. Xiong, G. Cao, X. Dai, Y., Phosphorylation of graphehe oxide to improve adsorption of U(VI) from aqueous solutions Journal of Radioanalytical & Nuclear Chemistry 2017 313 115.CrossRefGoogle Scholar
Chen, L., Zhou, C. H., & Fiore, S. (2016). Functional magnetic nanoparticle/clay mineral nanocomposites: Preparation, magnetism and versatile applications. Applied Clay Science, 127–128, 143163.CrossRefGoogle Scholar
Choi, J. Park, J. W., Competitive adsorption of heavy metals and uranium on soil constituents and microorganism Geosciences Journal 2005 9 5361.CrossRefGoogle Scholar
De Decker, Jeroen Folens, Karel De Clercq, Jeriffa Meledina, Maria Van Tendeloo, Gustaaf Du Laing, Gijs Van Der Voort, Pascal, Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption Journal of Hazardous Materials 2017 335 19.CrossRefGoogle ScholarPubMed
Debasish, D. Sureshkumar, M. K. Siddhartha, K. Mithal, N. Pillai, CGS, Sorption of uranium on magnetite nanoparticles Journal of Radioanalytical and Nuclear Chemistry 2010 285 447454.Google Scholar
Deng, J. Chen, Y. Lu, Y. Ma, X. Feng, S. Gao, N. Li, J., Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in fenton-like oxidation of rhodamine B Environmental Science and Pollution Research 2017 24 1439614408.CrossRefGoogle ScholarPubMed
Dhiraj, S., Garima, M., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology, 99, 60176027.Google Scholar
Dorota, K. Marzena, G. Ievgen, V. P. Hubicki, Z. B., Development of new effective sorbents based on nanomagnetite Nanoscale Research Letters 2016 11 152.Google Scholar
Dubinin, M. M., The Potential Theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces Chemical Reviews 1960 60 235241.CrossRefGoogle Scholar
Fatimah, I. Wang, S. Wulandari, D., ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue Applied Clay Science 2011 53 553560.CrossRefGoogle Scholar
Freundlich, H., Ueber die adsorption in loesungen (Adsorption in solution) Physical Chemistry 1906 57 384470.Google Scholar
Gao, X. Liu, X. Zhu, Z. Wang, X. Xie, Z., Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays Scientific Reports 2016 6 3054330558.CrossRefGoogle ScholarPubMed
Hajjaji, W. Andrejkovicova, S. Pullar, R. C. Tobaldi, D. M. Lopez-Galindo, A. Jammousi, F. Rocha, F. Labrincha, J. A., Effective removal of anionic and cationic dyes by kaolinite and TiO2/kaolinite composites Clay Minerals 2016 51 1927.CrossRefGoogle Scholar
He, H. Zong, M. Dong, F. Yang, P. Ke, G. Liu, M., Simultaneous removal and recovery of uranium from aqueous solution using TiO2, photoelectrochemical reduction method Journal of Radioanalytical & Nuclear Chemistry 2017 313 5967.CrossRefGoogle Scholar
Hennig, C. Reich, T. Dahn, R. Scheidegger, A. M., Structure of uranium sorption complexes at montmorillonite edge sites Radiochimica Acta 2002 90 653657.CrossRefGoogle Scholar
Hong, H. Kim, J. Fang, X. Hong, S. Chiang, T. C., Interfacial stability of ultrathin films of magnetite Fe3O4(111) on Al2O3(001) grown by ozone-assisted molecular-beam epitaxy Applied Physics Letters 2017 110 021601.CrossRefGoogle Scholar
Hu, B. Ye, F. Ren, X., X-ray absorption fine structure study of enhanced sequestration of U(VI) and Se(IV) by montmorillonite decorated zerovalent iron nanoparticles Environmental Science: Nano 2016 3 14601472.Google Scholar
Hu, J. Lo, I. M. Chen, G., Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles Langmuir the ACS Journal of Surfaces & Colloids 2005 21 1117311179.CrossRefGoogle ScholarPubMed
Hu, C. Gao, Z. Yang, X., One-pot low temperature synthesis of MFe2O4 (M = Co, Ni, Zn) superparamagnetic nanocrystals Journal of Magnetism & Magnetic Materials 2008 320 L70L73.CrossRefGoogle Scholar
Jiang, H. Sun, M. Xu, J. Lu, A. Shi, Y., Magnetic Fe3O4 Nanoparticles modified with polyethyleneimine for the removal of Pb(II) Clean Soil Air Water 2016 44 11461153.CrossRefGoogle Scholar
Kalantari, Katayoon Ahmad, Mansor B. Fard Masoumi, Hamid Reza Shameli, Kamyar Basri, Mahiran Khandanlou, Roshanak, Rapid and high capacity adsorption of heavy metals by Fe3O4/montmorillonite nanocomposite using response surface methodology: Preparation, characterization, optimization, equilibrium isotherms, and adsorption kinetics study Journal of the Taiwan Institute of Chemical Engineers 2015 49 192198.CrossRefGoogle Scholar
Karamanis, D. T., An aluminum pillared montmorillonite with fast uptake of strontium and cesium from aqueous solutions Clays and Clay Minerals 1997 45 709717.CrossRefGoogle Scholar
Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum Journal of the American Chemical Society 1918 40 13611368.CrossRefGoogle Scholar
Li, Y. Yi, H. Tang, X. Liu, X. Wang, Y. Cui, B., Study on the performance of simultaneous desulfurization and denitrification of Fe3O4-TiO2 composites Chemical Engineering Journal 2016 304 8997.CrossRefGoogle Scholar
Li, Y.Z., Wu, S.X., Yu, X.L., Bao, R.M., Wu, Z.K. & Wang, W. (2017) Optimization of pyrolysis efficiency based on optical property of semicoke in terahertz region. Energy, 126, 202207.CrossRefGoogle Scholar
Liu, G. Fang, H. Jing, Z. Li, L. Li, F. Chen, L., Yolk–shell structured Fe3O4@C@F-TiO2, microspheres with surface fluorinated as recyclable visible-light driven photocatalysts Applied Catalysis B Environmental 2014 150-151 515522.CrossRefGoogle Scholar
Liu, S. Xie, J. Su, Q. Du, G. Zhang, S. Cao, G., Understanding Li-storage mechanism and performance of MnFe2O4, by in situ TEM observation on its electrochemical process in nano lithium battery Nano Energy 2014 8 8494.CrossRefGoogle Scholar
Liu, M. Yang, L. Zhang, L., Functionalization of magnetic hollow porous oval shape NiFe2O4 as a highly selective sorbent for the simultaneous determination of five heavy metals in real samples Talanta 2016 161 288296.CrossRefGoogle ScholarPubMed
Lu, A. H. Salabas, E. L. Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application Angewandte Chemie 2010 46 12221244.CrossRefGoogle Scholar
McKinley, J. P. Zachara, J. M. Smith, S. C. Turner, G. D., The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montmorillonite Clays and Clay Minerals 1995 43 586598.CrossRefGoogle Scholar
Min, H. B. Lee, S. Y., Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength Journal of Industrial & Engineering Chemistry 2010 16 837841.Google Scholar
Phumying, S. Labuayai, S. Swatsitang, E. Amornkitbamrung, V. Maensiri, S., Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route Materials Research Bulletin 2013 48 20602065.CrossRefGoogle Scholar
Pylypchuk, I. V. Kołodyńska, D. Kozioł, M. Gorbyk, P. P., Gd-DTPA adsorption on chitosan/magnetite nanocomposites Nanoscale Research Letters 2016 11 168.CrossRefGoogle ScholarPubMed
Qiu, W. Yang, D. Xu, J. Hong, B. Jin, H. Jin, D., Efficient removal of Cr(VI) by magnetically separable CoFe2O4/activated carbon composite Journal of Alloys and Compounds 2016 678 179184.CrossRefGoogle Scholar
Rekhila, G. Trari, M. Bessekhouad, Y., Characterization and application of the hetero-junction ZnFe2O4/TiO2 for Cr(VI) reduction under visible light Applied Water Science 2017 7 12731281.CrossRefGoogle Scholar
Rufyikiri, G. Wannijn, J. Wang, L. Thiry, Y., Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris Environmental Pollution 2006 141 420427.CrossRefGoogle ScholarPubMed
Sadeghi, S. Azhdari, H. Arabi, H. Moghaddam, A. Z., Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples Journal of Hazardous Materials 2012 215-216 208216.CrossRefGoogle ScholarPubMed
Santos, A. C. Barbosa, S. Pessoa, M. F. Leal, N. Reboredo, F., Speciation, mobility and adsorption effects of various metals in sediments in an agricultural area surrounding a uranium ore deposit (Nisa, Portugal) Emirates Journal of Food and Agriculture 2018 30 503514.Google Scholar
Singer, D. M. Chatman, S. M. Ilton, E. S. Rosso, K. M. Banfield, J. F. Waychunas, G. A., Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface Environmental Science & Technology 2012 46 3381133820.Google Scholar
Singhal, P. Jha, S. K. Pandey, S. P. Neogy, S., Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles Journal of Hazardous Materials 2017 335 152161.CrossRefGoogle Scholar
Soliman, A. M. Murad, A. A. Sheikh, ESE Massad, A. M. Ali, I. M., Selective removal of uranium from wastewater using sludge collected from refinery wastewater treatment: Equilibrium, thermodynamic and kinetics studies Journal of Water Process Engineering 2017 19 267276.CrossRefGoogle Scholar
Sun, S. Zeng, H. Robinson, D. B. Raoux, S. Rice, P. M. Wang, S. X. Li, G., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles Journal of the American Chemical Society 2004 126 273279.CrossRefGoogle ScholarPubMed
Tinas, H. Çalişkan, E. Özbek, N. Akman, S., Preparation of Fe3O4@ montmorillonite composite as an effective sorbent for the removal of lead and cadmium from wastewater samples Turkish Journal of Chemistry 2016 40 974978.CrossRefGoogle Scholar
Todorov, P. T. Ilieva, E. N., Contamination with uranium from natural and anthropological sources Romanian Journal of Physics 2006 51 2740.Google Scholar
Tu, Y. Chan, T. Tu, H. Wang, S. You, C. Chang, C., Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles Chemosphere 2016 148 452458.CrossRefGoogle ScholarPubMed
Villalobos, M. Trotz, M. A. Leckie, O. J., Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite Environmental Science & Technology 2001 35 38493856.CrossRefGoogle Scholar
Wang, L. Li, J. Wang, Y. Zhao, L. Jiang, Q., Adsorption capability for congo red on nanocrystalline MFe2O4, (M = Mn, Fe, Co, Ni) spinel ferrites Chemical Engineering Journal 2012 181-182 7279.CrossRefGoogle Scholar
Wang, L. Li, J. Jiang, Q. Zhao, L., Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water Dalton Transactions 2012 41 45444552.CrossRefGoogle ScholarPubMed
Wilke, I. Ramanathan, V. Lachance, J. Tamalonis, A. Aldersley, M. Joshi, P. C., Characterization of the terahertz frequency optical constants of montmorillonite Applied Clay Science 2014 87 6165.CrossRefGoogle Scholar
Xiao, J. Chen, Y. Xu, J., Plasma grafting montmorillonite/iron oxide composite with β-cyclodextrin and its application for high-efficient decontamination of U(VI) Journal of Industrial and Engineering Chemistry 2014 20 28302839.CrossRefGoogle Scholar
Xuan, S. Zeng, S. Fan, M. Qin, L. Shu, K., One-step method of fabricating Fe3O4/Montmorillonite magnetic nanocomposites Rare Metal Materials & Engineering 2010 39 165168.Google Scholar
Xu, S., Zhang, Y., Wang, S., Xu, J., Ding, H., & Li, G. (2013). Structure-enhanced photocatalytic removal of Cr(VI) by a TiO2 superstructure with ultrathin rutile nanorods and abundant {110}faces. European Journal of Inorganic Chemistry, 14, 26012607.CrossRefGoogle Scholar
Yan, L. Li, S. Yu, H. Shan, R. Du, B. Liu, T., Facile solvothermal synthesis of Fe3O4/bentonite for efficient removal of heavy metals from aqueous solution Powder Technology 2016 301 632640.CrossRefGoogle Scholar
Yu, X. Huo, C. F. Li, Y. W. Wang, J. Jiao, H., Fe3O4 surface electronic structures and stability from GGA+U Surface Science 2012 606 872879.CrossRefGoogle Scholar
Zhang, X. Wang, J. Li, R. Dai, Q. Liu, L., Removal of uranium(VI) from aqueous solutions by surface modified magnetic Fe3O4 particles New Journal of Chemistry 2013 37 39143919.CrossRefGoogle Scholar
Zhou, C. H. Keeling, J., Fundamental and applied research on clay minerals: From climate and environment to nanotechnology Applied Clay Science 2013 74 39.CrossRefGoogle Scholar
Zhou, C. H. Zhao, L. Z. Chen, T. H. Ai, Q. W. Hong, P. H., Current fundamental and applied research into clay minerals in China Applied Clay Science 2016 119 37.CrossRefGoogle Scholar
Zhu, R. Chen, Q. Zhou, Q. Xi, Y. Zhu, J. He, H., Adsorbents based on montmorillonite for contaminant removal from water: A review Applied Clay Science 2016 123 239258.CrossRefGoogle Scholar
Zou, H. Song, M. Yi, F. Bian, L. Liu, P. Zhang, S., Simulated-sunlight-activated photocatalysis of methyl orange using carbon and lanthanum co-doped Bi2O3-TiO2 composite Journal of Alloys and Compounds 2016 680 5459.CrossRefGoogle Scholar
Zuo, Q. Gao, X. Yang, J. Zhang, P. Chen, G. Li, Y. Shi, K. Wu, W., Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution Journal of the Taiwan Institute of Chemical Engineers 2017 80 754760.CrossRefGoogle Scholar
Supplementary material: File

Jiang et al. supplementary material
Download undefined(File)
File 2 MB