Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-20T00:54:12.780Z Has data issue: false hasContentIssue false

Characterization of Synthetic Na-Beidellite

Published online by Cambridge University Press:  02 April 2024

J. Theo Kloprogge
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
J. Ben H. Jansen
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
John W. Geus
Affiliation:
Analytical Chemical Laboratory, Department of Inorganic Chemistry, University of Utrecht, Croesestraat 77a, 3522 AD Utrecht, The Netherlands

Abstract

Na-beidellite, a member of the smectite group, was grown hydrothermally from a gel of composition 0.35Na2O·2.35Al2O3·7.3SiO2 in NaOH solutions at a pH between 7.5 and 13.5, a pressure of 1 kbar, and a temperature of 350°C. The synthetic Na-beidellite was characterized by means of scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, electron microprobe, inductively coupled plasma-atomic emission spectroscopy, and thermogravimetric analysis. The unit-cell parameters of the orthorhombic cell are: a = 5.18, b = 8.96, and c = 12.54 Å. The cation-exchange capacity was determined to be 70 meq/100 g. A maximum of 40 wt. % water was present and reversibly lost by heating to about 55°C. The loss of water caused a decrease of the basal spacing to 9.98 Å. At temperatures ≥600°C, the Na-beidellite started to dehydroxylate, reaching its maximum in the range 600°–630°C. At 1100°C the remaining solid recrystallized to Al6Si2O13 (mullite) and SiO2 (cristobalite).

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradley, W. F. and Grim, R. E., 1951 High temperature thermal effects of clay and related materials Amer. Mineral. 36 182201.Google Scholar
Breen, C., Adams, J. M. and Riekel, C., 1985 Review of the diffusion of water and pyridine in the the interlayer space of montmorillonite: Relevance to kinetics of catalytic reactions in clays Clays & Clay Minerals 33 275284.CrossRefGoogle Scholar
Brindley, G. W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Brown, G., 1961 The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society.Google Scholar
De Kimpe, C. R., 1976 Formation of phyllosilicates and zeolites from pure silica-alumina gels Clays & Clay Minerals 24 200207.CrossRefGoogle Scholar
Farmer, V. C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331363.CrossRefGoogle Scholar
Gerard, P. and Herbillon, A. J., 1983 Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series Clays & Clay Minerals 31 143151.CrossRefGoogle Scholar
Goh, T. B. and Huang, P. M., 1986 Influence of citric and tannic acids on hydroxy-Al interlayering in montmorillonite Clays & Clay Minerals 34 3744.CrossRefGoogle Scholar
Greene-Kelly, R. and Mackenzie, R. C., 1957 The montmorillonite minerals (smectites) The Differential Thermal Investigation of Clays London Mineralogical Society 140164.Google Scholar
Grim, R. E. and Bradley, W. F., 1940 Effect of heat on illite and montmorillonite J. Amer. Ceram. Soc. 23 242248.CrossRefGoogle Scholar
Hamilton, D. L. and Henderson, C. M. B., 1968 The preparation of silicate compositions by a gelling method Mineral. Mag. 36 832838.Google Scholar
Loeppert, R. H., Mortland, M. M. and Pinnavaia, T. J., 1979 Synthesis and properties of heat-stable expanded smectite and vermiculite Clays & Clay Minerals 27 201208.CrossRefGoogle Scholar
Mackenzie, R. C. (1970) Simple phyllosilicates based on gibbsite-like and brucite-like sheets: in Differential Thermal Analysis, Vol. 1, Mackenzie, R. C., ed., Academic Press, London, 775 pp.Google Scholar
van der Marel, H. W. and Beutelspacher, H., 1976 Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures Amsterdam Elsevier.Google Scholar
Mitsyuk, B. A., Gorotskaya, L. I. and Rastrenko, A. I., 1976 The nature and properties of the new varieties of silica Geochem. Int. 13 101111.Google Scholar
Nadeau, P. H., Farmer, V. C., McHardy, W. J. and Bain, D. C., 1985 Compositional variations of the Unterrupsroth beidellite Amer. Mineral. 70 10041010.Google Scholar
Olivera, P., Rodriguez-Castellon, E. and Rodriguez-Garcia, A., 1988 Uptake of lanthanides by vermiculite Clays & Clay Minerals 36 6872.Google Scholar
Plee, D., Gatineau, L. and Fripiat, J. J., 1987 Pillaring processes of smectites with and without tetrahedral substitution Clays & Clay Minerals 35 8188.CrossRefGoogle Scholar
van der Pluijm, B. A., Lee, J. H. and Peacor, D. R., 1988 Analytical electron microscopy and the problem of potassium diffusion Clays & Clay Minerals 36 498504.CrossRefGoogle Scholar
Schutz, A., Stone, W. E. E. Poncelet, G. and Fripiat, J. J., 1987 Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions Clays & Clay Minerals 35 251261.CrossRefGoogle Scholar
Sterte, J. and Shabtai, J., 1987 Cross-linked smectites. V. Synthesis and properties of hydroxy-silicoaluminum mont-morillonites and fluorhectorites Clays & Clay Minerals 35 429439.CrossRefGoogle Scholar
Stubican, V. and Roy, R., 1961 A new approach to assignment of infra-red absorption bands in layer-structure silicates Z. Kristallogr. 115 200214.CrossRefGoogle Scholar
Strom, C., 1976 Unitcellc, an interactive APL program for computing cell constants Leiden, The Netherlands Geol. Mineral. Institute, State University of Leiden.Google Scholar
Torii, K. and Iwasaki, T., 1986 Synthesis of new trioctahedral Mg-smectite Chem. Letters 20212024.CrossRefGoogle Scholar
Torii, K. and Iwasaki, T., 1987 Synthesis of hectorite Clay Sci. 7 116.Google Scholar
Tsunashima, A., Konamura, F., Veda, S., Koizumi, M. and Matsushita, T., 1975 Hydrothermal synthesis of amino acid-montmorillonites and ammonium micas Clays & Clay Minerals 23 115118.CrossRefGoogle Scholar
Tuttle, O. F., 1949 Two pressure vessels for silicate-water studies Geol. Soc. Amer. Bull. 60 17271729.CrossRefGoogle Scholar
Weir, A. H. and Greene-Kelly, R., 1962 Beidellite Amer. Mineral. 47 137146.Google Scholar