Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-19T21:04:06.605Z Has data issue: false hasContentIssue false

Thermal models and clay diagenesis in the Tertiary-Cretaceous sediments of the Alava block (Basque-Cantabrian basin, Spain)

Published online by Cambridge University Press:  09 July 2018

J. Arostegui*
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo.644, 48080, Spain
F. J. Sangüesa
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo.644, 48080, Spain
F. Nieto
Affiliation:
Departamento de Mineralogía y Petrología, IACT, Universidad de Granada-CSIC, 18002 Granada, Spain
J. A. Uriarte
Affiliation:
Departamento de Geodinámica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/ EHU, Apdo. 644, 48080, Spain

Abstract

Diagenesis in the Cretaceous and Tertiary sediments of the Alava Block (Basque- Cantabrian basin) has been studied using the clay mineralogy (X-ray diffraction) of cuttings from three representative wells of a N—S cross-section. More than 5500 m of various lithologies (marls, mudstones and sandstones) have been drilled in the northern part of the domain, and 2100 m in the southern zone. The illitization of smectite and the disappearance of kaolinite, due to diagenesis, are the most characteristic features in the northern well. Evolution of smectite to illite has been differentiated into four zones, from top to bottom of the series, each showing specific I-S interstratified clay assemblages. The disappearance of smectite and the distribution of kaolinite in the other two wells are explained based on source-area considerations. Burial and thermal history have been reconstructed, revealing a northward increase in thermal flow until the Oligocene (Alpine orogeny paroxysm). In the northern well, the thermal model suggests temperatures of 160 and 270°C for the disappearance of smectite (R0) and illite-smectite (I-S) mixed-layer R1 clay minerals, respectively. The disappearance of kaolinite is related to a temperature of 230°C, a temperature never attained in the other two wells. Retardation of these processes, in relation to temperature values in the literature, is a consequence of the poor reactivity of marly lithologies, due to the low availability of cations. In this regard, the scarcity of reactants (K-bearing phases) and the absence of pathways (low permeability) for their access and circulation imply that illitization could have taken place in a closed system, by diffusion, on a very small scale, i.e. that of the original smectite grains.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abid, I.A., Hesse, R. & Harper, J.D. (2004) Variations in mixed-layer illite/smectite diagenesis in the rift and post-rift sediments of the Jeanne d‘Arc Basin, Grand Banks, offshore Newfoundland, Canada. Canadian Journal of Earth Sciences, 41, 401429.CrossRefGoogle Scholar
Ahn, J.H. & Peacor, D.R. (1985) Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments. Clays and Clay Minerals, 33, 165179.CrossRefGoogle Scholar
Allen, P.A. & Allen, J.R. (1990) Basin Analysis: Principles and Applications. Blackwell Scientific Publications, Oxford, UK, pp. 282302.Google Scholar
Amiot, M. (1982) El Cretacico superior de la Region Navarro-Cántabra. Pp. 88111 in: El Cretácico de Españ (Departamento de Estratigrafía de la Facultad de Ciencias de la Universidad Complutense de Madrid & Instituto de Geología Económica del C.S.I.C., editors). Universidad Complutense, Madrid.Google Scholar
Amiot, M., Floquet, M. & Mathey, B. (1983) Relations entre les trois domaines de sédimentation du Crétacé supérieur. In: Vue sur le Crétacé basco-cantabrique et nord-ibérique: Une marge et son arrière-pays, ses environnements sédimentaires. Mémoires Géologiques de l‘Université de Dijon, 9, 169176.Google Scholar
Arostegui, J., Uriarte, J.A. & Peña, J.L. (1991) Smectite/ illite distribution and temperature-time in Upper Cretaceous of the Alava Trough. Basque-Cantabrian basin (Spain). Pp. 4752 in: Proceedings of 7th Euroclay Conference (Störr, M. Henning, K.-H. & Adolphi, P., editors). Ernst-Moritz-Arndt Universitat, Greisfswald, Dresden, Germany.Google Scholar
Arostegui, J., Nieto, F., Ortega-Huertas, M., Velasco, F. & Zuluaga, M.C. (1993) Mineralogña de arcillas y grado de diagénesis del Cretacico Inferior, en el flanco Sur del Anticlinorio de Bilbao. Estudios Geológicos, 49, 5570.CrossRefGoogle Scholar
Barker, C.E. & Pawlewicz, M.J. (1986) The correlation of vitrinite reflectance with maximun temperature in humic organic matter. Pp. 7983 in: Paleogeothermics (Buntebarth, G. & Stegena, L., editors). Springer-Verlag, New York CrossRefGoogle Scholar
Bartier, D., Buatier, M., Lopez, M., Potdevin, J.L., Chamley, H. & Arostegui, J. (1998) Lithological control on the occurrence of chlorite in the diagenetic Wealden complex of the Bilbao anticlinorium (Basque-Cantabrian Basin, Northern Spain). Clay Minerals, 33, 317332.CrossRefGoogle Scholar
Bauluz, B., Peacor, D.R. & Gonzalez Lopez, J.M. (2000) Transmission electron microscopy study of illitization in pelites from the Iberian Range, Spain: Layerby- layer replacement. Clays and Clay Minerals, 48, 374384.CrossRefGoogle Scholar
Boillot, G. & Malod, J. (1988) The north and northwest Spanish continental margin: a review. Revista de la Sociedad Geológica de Españ, 1, 295316.Google Scholar
Boles, J.R. & Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 5570.Google Scholar
Dong, H. & Peacor, D.R. (1996) TEM observations of coherent stacking relations in smectite, I/S and illite of shales: evidence for MacEwan crystallites and dominance of 2M1 polytypism. Clays and Clay Minerals, 44, 257275.CrossRefGoogle Scholar
Dong, H, Peacor, D.R. & Freed RL. (1997) Phase relation among smectite, R1 illite-smectite, and illite. American Mineralogist, 82, 379391.CrossRefGoogle Scholar
Drits, V., Srodon, J. & Eberl, D.D. (1997) XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation. Clays and Clay Minerals, 45, 461475.CrossRefGoogle Scholar
Drief, A. & Nieto, F. (2000) Chemical composition of smectites formed in clastic sediments. Implications for the smectite-illite transformation. Clay Minerals, 35, 665678.CrossRefGoogle Scholar
Engeser, T. & Schwentke, W. (1986) Towards a new concept of the tectogenesis of the Pyrenees. Tectonophysics, 129, 233242.CrossRefGoogle Scholar
Eslinger, E. & Glansmann, J.R. (1993) Geothermometry and geochronology using clay minerals –an introduction. Clays and Clay Minerals, 41, 117118.CrossRefGoogle Scholar
Essene, E.J. & Peacor, D.R. (1995) Clay mineral thermometry – A critical perspective. Clays and Clay Minerals, 43, 540553.CrossRefGoogle Scholar
Essene, E.J. & Peacor, D.R. (1997) Illite and smectite: metastable, stable, or unstable? Further discussion and a correction. Clays and Clay Minerals, 45, 116122.CrossRefGoogle Scholar
EVE (1995) Mapa Geológico del País Vasco a escala 1/ 25.000. Edited by Ente Vasco de la Energña (EVE), Bilbao, Spain.Google Scholar
Freed, R.L. & Peacor, D.R. (1989) Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Minerals, 24, 171180.CrossRefGoogle Scholar
Frey, M. (1987) The reaction isograd kaolinite + quartz = pyrophyllite + H2O, Helvetic Alps, Switzerland. Schweizeris che Mineralogische und Petrtographische Mitteilungen, 67, 111 Google Scholar
García-Mondejar, J. (1982) Aptiense y Albiense. Pp. 6384 in: El Cretácico de Españ (Departamento de Estratigrafía de la Facultad de Ciencias de la Universidad Complutense de Madrid & Instituto de Geología Económica del C.S.I.C., editors). Universidad Complutense, Madrid.Google Scholar
Gier, S. (2000) Clay mineral and organic diagenesis of the Lower Oligocene Schöneck Fishshale, western Austrian Molasse Basin. Clay Minerals, 35, 709717.CrossRefGoogle Scholar
Giorgetti, G, Mata, M.P. & Peacor, D.R. (2000) TEM study of the mechanism of transformation of detrital kaolinite and muscovite to illite/smectite in sediments of the Salton Sea Geothermal Field. European Journal of Mineralogy, 12, 923934.CrossRefGoogle Scholar
Glansman, J.R, Larter, S., Briedis, NA. & Lundegart, P.D. (1989) Shale diagenesis in the Bergen High area, North Sea. Clays and Clay Minerals, 37, 97112.CrossRefGoogle Scholar
Gräfe, K.U. & Wiedmann, J. (1993) Sequence stratigraphy in the Upper Cretaceous of the Basco- Cantabrian Basin (northern Spain). Geologische Rundschau, 82, 327361.CrossRefGoogle Scholar
Hillier, S. (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays and Clay Minerals, 41, 240259.CrossRefGoogle Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana. Pp. 5579 in: Aspects of Diagenesis (Scholle, PA. & Schluger, P.S., editors). Special Publications , 26, Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, USA.CrossRefGoogle Scholar
Hower, J., Eslinger, E., Hower, M.E. & Perry EA. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Huang, W.-L. Longo, J.M. & Peaver, D.R. (1993) An experimentally derived kinetic model for the smectite- to-illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162177.CrossRefGoogle Scholar
IGME (1979) Mapa geológico Nacional MAGNA a escala 1:50.000. Hojas de Haro, Miranda de Ebro, La Puebla de Arganzón, Orduña, Vitoria and Eulate. Edited by Instituto Geológico y Minero de Espana, Madrid, Spain.Google Scholar
IGME (1987) Contribución de la exploración petrolñfera al conocimiento de la geologña de Espana. Edited by Instituto Geológico y Minero de Espana, Madrid, Spain, 465 pp.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays and Clay Minerals, 45, 132146.CrossRefGoogle Scholar
Lanson, B. & Besson, G (1992) Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns. Clays and Clay Minerals, 40, 4052.CrossRefGoogle Scholar
Lanson, B. & Velde, B. (1992) Decomposition of X-ray diffraction patterns: A convenient way to describe complex diagenetic smectite-to-illite evolution. Clays and Clay Minerals, 40, 629643.CrossRefGoogle Scholar
Martinez-Torres, L.M. (1991) El Manto de los Mármoles (Pirineo Occidental): geologña estructural y evolucion geodinamica. PhD thesis, Universidad País Vasco, Spain.Google Scholar
Masuda, H., Peacor, D.R. & Dong, H. (2001) Transmission electron microscopy study of the conversion of smectite to illite in mudstones of the Nankai Trough: contrast with coeval bentonites. Clays and Clay Minerals, 49, 109118.CrossRefGoogle Scholar
Mathey, B., Floquet, M. & Martñnez-Torres, L.M. (1999) The Leiza palaeo-fault: role and importance in the Upper Cretaceous sedimentation and palaeogeography of the Basque Pyrenees (Spain). Comptes Rendues de l Académie des Sciences de Paris, 328, 393399.Google Scholar
Merriman, RJ. (2005) Clay minerals and sedimentary basin history. European Journal of Mineralogy, 17, 720.CrossRefGoogle Scholar
Montigny, R, Azambre, B., Rossy, M. & Thoizat R (1986) K-Ar study of Cretaceous magmatism and metamorphism in the Pyrenees: age and length of rotation of the Iberian peninsula. Tectonophysics, 129, 257273.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. Jr., (1997) X-ray diffraction and the Identification and Analysis of Clay Minerals, 2nd edition. Oxford University Press, New York, pp. 227296.Google Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays and Clay Minerals, 44, 304323.CrossRefGoogle Scholar
Olivet, J.L., Bonnin, J., Beuzard, P. & Auzende, J.M. (1984) Cinematique de l’Atlantique nord et central. Rapports Scientifiques et Techniques du Centre National pour l‘Exploitation des Oceans, 54, 10. Pp. Paris, France.Google Scholar
Pearson, M.J. & Small, J.S. (1988) Illite-smectite diagenesis and paleotemperatures in northern North Sea Quaternary to Mesozoic shale sequences. Clay Minerals, 23, 109132.CrossRefGoogle Scholar
Ramírez del Pozo, J. (1971) Bioestratigrafía y microfacies del Jurásico y Cretácico del Norte de Espana (Region Cantábrica). Memorias del Instituto Geológico y Minero de Espana, 78, 357 pp.Google Scholar
Rat, P. (1988) The Basque-Cantabrian basin between the Iberian and European plates: Some facts but still many problems. Revista de la Sociedad Geológica de Espana, 1, 327348.Google Scholar
Remane, J. (2000) International Stratigraphic Chart, with Explanatory Note. Sponsored by ICS, IUGS and UNESCO, 31st International Geological Congress, Rio de Janeiro, 16 pp.Google Scholar
Roberson, H.E. & Lahan, R.W. (1981) Smectite to illite conversion rates: effects of solution chemistry. Clays and Clay Minerals, 29, 129135.CrossRefGoogle Scholar
Sangüesa, F.J. (1998) La diagenesis en el Bloque Alavés de la Cuenca Vasco-Cantábrica. Distribucion, modelización y aplicaciones. PhD thesis, Universidad de País Vasco, Spain.Google Scholar
Sangüesa, F.J., Arostegui, J. & Suárez-Ruiz, I. (2000) Distribution and origin of clay minerals in the Lower Cretaceous of the Alava Block (Basque-Cantabrian basin. Spain). Clay Minerals, 35, 393410.CrossRefGoogle Scholar
Schegg, R. & Leu, W. (1996) Clay mineral diagenesis and thermal history of the Thonex Well, Western Swiss Molasse Basin. Clays and Clay Minerals, 44, 693705.CrossRefGoogle Scholar
Scotchman, I.C. (1987) Clay diagenesis in Kimmeridge Clay Formation, onshore UK, and its relation to organic maturation. Mineralogical Magazine, 51, 535551.CrossRefGoogle Scholar
Sellwood, B.W. & Price, G.D. (1994) Sedimentary facies as indicators of Mesozoic paleoclimate. Pp. 1725 in: Paleoclimates and their Modelling –with special reference to the Mesozoic era (Allen, J.RL., Hoskins, B.J., Sellwood, B.W., Spicer, RA. & Valdes, P.J., editors). Chapman & Hall/Royal Society, UK.CrossRefGoogle Scholar
Środoń, J. & Eberl, D.D. (1984) Illite. Pp. 495544 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington D.C., USA.CrossRefGoogle Scholar
Tissot, B.P., Pelet, R & Ungerer, Ph. (1987) Thermal history of sedimentary basins, maturation indices and kinetics of oil and gas generation. American Association of Petroleum Geologists Bulletin, 71, 14451466.Google Scholar
Uysal, I.T., Golding, S.D. & Audsley, F. (2000a) Claymineral authigenesis in the Late Permian coal measures, Bowen Basin, Queensland, Australia. Clays and Clay Minerals, 48, 351365.CrossRefGoogle Scholar
Uysal, I.T., Glikson, M., Golding, S.D. & Audsley, F. (2000b) The thermal history of the Bowen Basin, Queensland, Australia: vitrinite reflectance and the clay mineralogy of Late Permian coal measures. Tectonophysics, 323, 105129.CrossRefGoogle Scholar
Velde, B. & Lanson, B. (1993) Comparison of I-S transformtion and maturity of organic matter at elevated temperatures. Clays and Clay Minerals, 41, 178183.CrossRefGoogle Scholar
Vergés, J. & García-Saenz, J. (2001) Mesozoic evolution and Cainozoic inversion of the Pyrenean Rift. Pp. 187212 in: Peri-Tethyan Rift/Wrench Basins and Passive Margins (Ziegler, PA., Cavazza, W., Robertson, A.H.F. & Crasquin-Soleau, S., editors). Mémoires du Muséum National d’Histoire Naturelle, 186, Paris, France.Google Scholar
Waples, D.W., Kamata, H. & Suizu, M. (1992) The art of maturity modeling; Part 1, Finding a satisfactory geologic model. American Association of Petroleum Geologists Bulletin, 76, 3146.Google Scholar
Yahi, N. Schaefer, R G & Littke, R (2001) Petroleum generation and accumulation in the Berkine Basin, Eastern Algeria. American Association of Petroleum Geologists Bulletin, 85, 14391467.Google Scholar