Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T14:20:25.168Z Has data issue: false hasContentIssue false

Reduction of Fe(III) in a high-iron saponite. Pillaring of the reduced samples with Al13 oligomers

Published online by Cambridge University Press:  09 July 2018

M. A. Vicente
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de la Merced S/N, 37008-Salamanca, Spain
M. Suarez
Affiliation:
Area de Mineralogía y Cristalografía, Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced S/N, 37008-Salamanca, Spain
M. A. Bañares-Muñoz
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de la Merced S/N, 37008-Salamanca, Spain
J. M. M. Pozas
Affiliation:
Area de Mineralogía y Cristalografía, Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced S/N, 37008-Salamanca, Spain

Abstract

A high-iron content saponite, of the variety griffithite, was reduced using sodium dithionite and hydrazonium sulphate solutions. An important amount of Fe3+ was reduced during the treatments. When using sodium dithionite as reducing agent, the reduction was accompanied by the substitution of Ca2+ by Na+ as the exchangeable cation. When using hydrazonium sulphate, the reduction was accompanied by acid activation of the clay, the protons being released in the oxidation reaction of the hydrazonium cation. The charge balance in the clay layers is affected by the reduction processes. These structural changes do not significantly affect the pillaring ability of the clay, which is similar in the reduced solids and in the natural griffithite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergaoui, L., Lambert, J.F., Vicente-Rodríguez, M.A., Michot, L.J. & Villieras, F. (1995a) Porosity of synthetic saponites with variable layer charge pillared by Al13 polycations. Langmuir, 11, 28492852.CrossRefGoogle Scholar
Bergaoui, L., Lambert, J.F., Suquet, H. & Che, M. (1995b) CuII on Al13-pillared saponites: Macroscopic adsorption measurements and EPR spectra. J. Phys. Chem. 99, 21552161.Google Scholar
Chen, S.Z., Low, P.F. & Roth, C.B. (1987) Relation between potassium fixation and the oxidation state of octahedral iron. Soil Sci. Soc. Amer. J. 41, 82–86.Google Scholar
Chevalier, S., Franck, R., Lambert, J.F., Barthomeuf, D. & Suquet, H. (1994a) Characterization of the porous structure and cracking activity of Al-pillared saponites. Appl. Catal. A: General, 110, 153165.Google Scholar
Chevalier, S., Franck, R., Suquet, H., Lambert, J.F. & Barthomeuf, D. (1994b) Al-pillared saponites. Part I.- IR studies. J. Chem. Soc. Faraday Trans. 90, 667674. Part 2.- NMR studies. Ibid. 90, 675682. Part 3. Effect of parent clay charge on the intercalation-pillaring mechanism and structural properties. Ibid. 91, 22292239.Google Scholar
De la Calle, C. & Suquet, H. (1992) Vermiculite. Pp. 455-496 in: Hydrous Phyllosilicates. (Bailey, S.W., editor). Mineralogical Society of America, Washington.Google Scholar
Gates, W.P., Wilkinson, H.T. & Stucki, J.W. (1993) Swelling properties of microbially reduced ferruginous smectite. Clays Clay Miner. 41, 360–364.Google Scholar
Khaled, E.M. & Stucki, J.W. (1991) Effects of iron oxidation state on cation fixation in smectites. Soil Sci. Soc. Amer. J. 55, 550554.Google Scholar
Komadel, P., Madejová, J. & Stucki, J.W. (1995) Reduction and reoxidation of nontronite: Questions of reversibility. Clays Clay Miner. 43, 105110.Google Scholar
Kostka, J.E., Stucki, J.W., Nealson, K.H. & Wu, J. (1996) Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-I. Clays Clay Miner. 44, 522529.Google Scholar
Lear, P.R. & Stucki, J.W. (1985) The role of structural hydrogen in the reduction and reoxidation of iron in nontronite. Clays Clay Miner. 33, 539545.Google Scholar
Li, L., Liu, X., Ge, Y., Xu, R., Rocha, J. & Klinowski, J. (1993) Structural studies of pillared saponites. J. Phys. Chem. 97, 1038910393.CrossRefGoogle Scholar
Malla, P.B. & Kormaneni, S. (1993) Properties and characterization of AlzO3 and SiO2-TiO/ pillared saponite. Clays Clay Miner. 41, 472483.CrossRefGoogle Scholar
Occelli, M.L. (1988) Physicochemical properties of pillared clay catalysts. Pp. 101 – 137 in: Keynotes in Energy-Related Catalysis. Stud. Surf. Sci. Catal. 35. (Kaliaguine, S., editor). Elsevier, Amsterdam.Google Scholar
Roth, C.B. & Tullock, R.J. (1972) Deprotonation of nontronite resulting from chemical reduction of slxuctural ferric iron. Proc. Int. Clay Conf. Madrid, 89-98.Google Scholar
Rozenson, I. & Heller-Kallai, L. (1976) Reduction and oxidation of Fe3+ in dioctahedral smectites. (1) Reduction with hydrazine and dithionite. Clays Clay Miner, 24, 271282. (2) Reduction with sodium sulphide solutions. Ibid. 24, 283–288.Google Scholar
Schoonheydt, R.A., Van den Eynde, J., Tubbax, H., Leeman, H., Stuyckens, M., Lenotte, I. & Stone, W.E.E. (1993) The pillaring of clays, Part I. Pillaring with dilute and concentrated AI solutions. Clays Clay Miner. 41, 598607. Part II. Pillaring with [Al13O4(OH)24(H2O)12]7+. Ibid. 42, 518525.Google Scholar
Stucki, J.W. & Lear, P.R. (1989) Variable oxidation states of iron in the crystal structure of smectite clay minerals. Pp. 330–358 in: Structures and Active Sites of Minerals. (Coyne, L.M., Blake, D. & McKeever, S., editors). American Chemical Society, Washington, DC, USA.Google Scholar
Stucki, J.W. & Roth, C.B. (1977) Oxidation-reduction mechanisms for structural iron in nontronite. Soil Sci. Soc. Am. J. 41, 808814.Google Scholar
Stucki, J.W. & Tessier, D. (1991) Effects of iron oxidation state on the texture and structural order of Na-nontronite gels. Clays Clay Miner. 39, 137143.Google Scholar
Stucki, J.W., Bailey, G.W. & Gan, H. (1996) Oxidationreduction mechanisms in iron-bearing phyllosilicates. Appl. Clay Sci. 10, 417430.Google Scholar
Stucki, J.W., Golden, D.C. & Roth, C.B. (1984a) Preparation and handling of dithionite-reduced smectite suspensions. Clays Clay Miner. 32, 191197.Google Scholar
Stucki, J.W., Golden, D.C. & Roth, C.B. (1984b) Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites. Clays Clay Miner. 32, 350356.Google Scholar
Usami, H., Tagaki, K. & Sawaki, Y. (1992) Regioselective photocyclodimerization of cyclohexenones intercalated on clay layers. Chem. Lett. 1992, 14051408.Google Scholar
Vicente Rodríguez, M.A., Suáez Barrios, M., López González, J.D. & Bañares Muñoz, M.A. (1994) Acid activation of a ferrous saponite (griffithite): Physicochemical characterization and surface area of the products obtained. Clays Clay Miner. 42, 724730.Google Scholar
Vicente Rodríguez, M.A., López González, J.D. & Bañares Muñoz, M.A. (1995) Preparation of microporous solids by acid treatment of a saponite. Micropor. Mater. 4, 251264.Google Scholar
Vicente, M.A., Bañares Muñoz, M.A., Sueirez, M., Pozas, J.M.M., López González, J.D., Sautamaría, J. & Jiménez López, A. (1996) Pillaring of a high iron content saponite with All3 polycations: Surface and catalytic properties. Langmuir, 12, 5143–5147.Google Scholar