Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T19:42:19.988Z Has data issue: false hasContentIssue false

Origin of mixed-layered (R1) muscovite-chlorite in an anchizonal slate from Puncoviscana Formation (Salta Province, Argentina)

Published online by Cambridge University Press:  09 July 2018

M. Do Campo*
Affiliation:
Instituto de Geocronología y Geología Isotópica and Facultad de Ciencias Exactas y Nautrales, U.B.A., Pabellón INGEIS, Ciudad Universitaria, 1428 Buenos Aires, Argentina
F. Nieto
Affiliation:
Departamento de Mineralogía y Petrología and I.A.C.T., Universidad de Granada-CSIC, Avda. Fuentenueva s/n, 18002 Granada, Spain

Abstract

Mica-chlorite mixed-layering was identified by X-ray diffraction (XRD) as a major or subordinate constituent in several slates of the Puncoviscana Formation from Sierra de Mojotoro (Eastern Cordillera, NW Argentina). In order to determine the crystallochemical characteristics of these mixed-layered sequences and interpret their petrological meaning, anchizonal slate P90 was chosen for TEM observations. In this slate, dioctahedral mica and chlorite form interleaved phyllosilicate grains (IPG) or stacks, up to 110 um long, preferentially oriented with (001) planes at a high angle to the slaty cleavage but also oblique to S0.

In agreement with XRD results, the main phyllosilicates identified by transmission electron microscopy (TEM) were dioctahedral mica and random mixed-layer muscovite-chlorite, with chlorite in subordinate amounts and scarce smectite. In the lattice-fringe images of mixed-layer packets, a sequence of irregular stacking that produced apparent 24 Å (10 + 14) layers was observed, but it was frequently possible to distinguish the 10 Å layers from adjacent 14 Å layers. In nearly all packets, 14 Å layers prevail, exhibiting 14 Å:10 Å ratios between 1:1 and 3:1. Some elongated lenticular fissures which are probably a consequence of layer collapse caused by the TEM vacuum were identified in these packets. The straight, continuous appearance of lattice fringes plus the scarce evidence of collapsed layers identified suggest that these packets correspond principally to mixed-layer muscovite-chlorite, which is confirmed by analytical electron microscopy analyses. However, smectite-like layers are probably the third component of some of these mixed-layer sequences, which may account for their high Si and low (Fe + Mg) contents, their low interlayer charge in relation to theoretical interlayer muscovite-chlorite, and for the presence of Ca in the interlayer site.

Textural relationships between chlorite and muscovite packets in IPG along with the observed transformations from 14 Å to 10 Å along the layer, is compatible with a prograde metamorphic replacement of chlorite in stacks by dioctahedral mica layers, probably in the presence of an aqueous fluid.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite- to illite transition. Clays and Clay Minerals. 34, 165179.Google Scholar
Bailey, S.W. (1982) Nomenclature for regular interstratifications. American Mineralogist. 67, 394–398.Google Scholar
Champness, P.E., Cliff, G. & Lorimer, G.W. (1981) Quantitative analytical electron microscopy. Bulletin de Mineralogie. 104, 236240.CrossRefGoogle Scholar
Cliff, G. & Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy. 103, 203207.CrossRefGoogle Scholar
Do Campo, M. (1999a) Metamorfismo del basamento en la Cordillera Oriental y borde oriental de la Puna. Pp. 41–51 in: Geologia del Noroeste de Argentin. (G. Gonzalez Bonorino, R. Omarini and J. Viramonte, editors). XIV Congreso Geologico Argentino, Salta, Tomo I, Argentina.Google Scholar
Do Campo, M. (1999b) Mineralogía, geoquímica y geocronología de la Formación Puncoviscana (Neoproterozoico) entre los 23°30’. y 25°50’ de Latitud Sur, Noroeste de Argentina. PhD thesis (unpublished), Universidad de Buenos Aires, Argentina, 287 pp.Google Scholar
Do Campo, M. & Nieto, F. (2003) Transmission electron microscopy study of the very low-grade metamorphic evolution in Neoproterozoic pelites of the Puncoviscana Formation (Cordillera Oriental, NW Argentina). Clay Minerals. 38, 459481.Google Scholar
Do Campo, M., Nieto, F. & Omarini, R. (1998) Mineralogia de arcillas y metamorfismo de la Formacion Puncoviscana en localidades de la Cordillera Oriental y Puna, Argentina. Adas 10° Congreso Latinoamericano de Geología, Buenos Aires, Argentina. vol. II, pp. 217-223.Google Scholar
Dong, H. & Peacor, D.R. (1996) TEM observations of coherent stacking relations in smectite, I/S and illite of shales: Evidence for MacEwan crystallites and dominance of 2M 1. polytypism. Clays and Clay Minerals. 44, 257 -275.Google Scholar
Eggleton, R.A. & Banfield, J.F. (1985) The alteration of granitic biotite to chlorite. American Mineralogist. 70, 902910.Google Scholar
Essene, E.J. & Peacor, D.R. (1995) Clay mineral thermometry: a critical perspective. Clays and Clay Mineral. 43, 540553.Google Scholar
Franceschelli, M., Leoni, L. & Sartori, F. (1991) Crystallinity distribution and crystallinity-b0 relationships in white K-micas of Verrucano metasediments (Northern Apennines, Italy). Schweizerische Mineralogische und Petrographische Mitteilungen. 71, 161167.Google Scholar
Giorgetti, G., Memmi, I. & Nieto, F. (1997) Microstuctures of intergrown phyllosilicate grains from Verrucano metasediments (northern Apennines, Italy). Contributions to Mineralogy and Petrology. 128, 127138.Google Scholar
Greg, W.J. (1986) Deformation of chlorite-mica aggregates in cleaved psammitic and pelitic rocks from Islesboro, Maine, USA. Journal of Structural Geology. 8, 5968.CrossRefGoogle Scholar
Guidotti, C.V., Sassi, F.P. & Blencoe, J.G. (1989) Compositional controls on the a and b cell dimensions of 2M 1 muscovite. European Journal of Mineralogy. 1, 71 -84.Google Scholar
Jezek, P. (1990) Análisis sedimentológico de la Formacion Puncoviscana entre Tucumán y Salta. Pp. 9–36 in: El Ciclo Pampeano en el Noroeste Argentin. (F.G. Aceflolaza, H. Miller & A.J. Toselli, editors). Serie Correlación Geológica N° 4, Universidad Nacional de Tucuman, Argentina.Google Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology. 9, 665–670.Google Scholar
Knipe, R.J. (1981) The interaction of deformation and metamorphism in slates. Tectonophysics. 78, 249272.Google Scholar
Lee, J.H. & Peacor, D.R. (1985) Ordered 1:1 interstratifications of illite and chlorite. A transmission and analytical electron microscopy study. Clays and Clay Minerals. 33, 463467.Google Scholar
Lee, J.H., Peacor, D.R., Lewis, D.D. & Wintsch, R.P. (1984) Chlorite-illite/muscovite interlayered and interstratified crystals: A TEM/STEM study. Contributions to Mineralogy and Petrology. 88, 372385.Google Scholar
Li, G., Peacor, D.R., Merriman, R.J., Roberts, B. & van der Pluijm, B.A. (1994) TEM and AEM constraints on the origin and significance of chlorite-mica stacks in slates: an example from Central Wales, U.K. Journal of Structural Geology. 16, 11391157.Google Scholar
Mon, R. & Hong, F.D. (1991) The structure of the Precambrian and Lower Paleozoic basement of the Central Andes between 22° and 32°S. Lat. Geologische Rundschau. 80, 745758.Google Scholar
Mon, R. & Hong, F.D. (1996) Estructura del basamento proterozoico y paleozoico inferior del norte argentino. Revista de la Asociación Geológica Argentina. 51, 314.Google Scholar
Nieto, F. (1997) Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach. European Journal of Mineralogy. 9, 829841.CrossRefGoogle Scholar
Nieto, F., Velilla, N., Peacor, D.R. & Ortega Huertas, M. (1994) Regional retrograde alteration of sub-greenschist facies chlorite to smectite. Contributions to Mineralogy and Petrology. 115, 243252.CrossRefGoogle Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays and Clay Minerals. 44, 304323.CrossRefGoogle Scholar
Nieto, F., Mata, M.P., Bauluz, B., Giorgetti, G., Árkai, P. & Peacor, D.R. (2005) Retrograde diagenesis, a widespread process on a regional scale. Clay Minerals. 40, 93104.Google Scholar
Omarini, R.H. (1983) Caracterización litológica, diferenciación y génesis de la Formación Puncoviscana entre el Valle de Lerma y la Faja Eruptiva de la Puna. PhD thesis (unpublished), Universidad Nacional de Salta, Argentina, 202 pp.Google Scholar
Omarini, R. & Baldis, B.A.J. (1984) Sedimentología y mecanismos deposicionales de la Formación Puncoviscana (Grupo Lerma, Precambrico-Cámbrico) del noroeste Argentino. Pp. 384-398 in: 9th Congreso Geologico Argentino. Bariloche, Argentina.Google Scholar
Ruíz Cruz, M.D. (2001) Mixed-layer mica-chlorite in very low-grade metaclastites from the Maláguide Complex (Betic Cordilleras, Spain). Clay Minerals. 36, 307324.Google Scholar
Shau, Y.H., Peacor, D.R. & Essene, E.J. (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contributions to Mineralogy and Petrology. 105, 123 -142.Google Scholar
Turner, J.C.M. (1960) Estratigrafía de la Sierra de Santa Victoria y adyacencias. Academia Nacional de Ciencias Boletin. 41, Cordoba, pp. 163-196.Google Scholar
Van der Pluijim, B.A., Lee, J.H. & Peacor, D.R. (1988) Analytical electron microscopy and the problem of potassium diffusion. Clays and Clay Minerals. 36, 498-504.Google Scholar
Veblen, D.R. & Ferry, J.M. (1983) A TEM study of the biotite-chlorite reaction and comparison with petrologic observations. American Mineralogist. 68, 11601168.Google Scholar
Warr, L.N. & Rice, A.H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology. 12, 141 – 152.Google Scholar
Weber, K. (1981) Kinematic and metamorphic aspects of cleavage formation in very low grade metamorphic slates. Tectonophysics. 78, 297306.Google Scholar