Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T18:31:26.106Z Has data issue: false hasContentIssue false

Isotopic (K-Ar and oxygen) constraints on the extent and importance of the Liassic hydrothermal activity in western Europe

Published online by Cambridge University Press:  09 July 2018

N. Clauer
Affiliation:
Centre de Géochimie de la Surface (CNRS), 67084 Strasbourg, France
H. Zwingmann
Affiliation:
Centre de Géochimie de la Surface (CNRS), 67084 Strasbourg, France
S. Chaudhuri
Affiliation:
Department of Geology, Kansas State University, Manhattan, 66506 Kansas, USA

Abstract

The K-Ar dates and oxygen isotope data of illite-to-mica mineral phases in Permian to Triassic sandstones from Germany and Libya have been compared to previously published results of similar minerals of Liassic ages taken from lithologically similar rocks in several sites in western Europe and northern Africa. The widespread Liassic age for the micaceous mineral phases can be related to abnormal heat pulses induced by pre-rifting conditions. The temperatures in most cases appeared to be in the 150–220°C range. Some of these hydrothermal activities were responsible for both gas generation and U and Pb-Zn concentrations.

An approach combining K-Ar isotope dates and oxygen isotope signatures provides a framework for the characterization of the clay separates used in isotopic investigations and for depicting any crystallization conditions. The trend in decreases in δ18O values relative to increases in K-Ar dates, while the size of the clay fractions in a single sample increases, is indicative of detrital contamination. Varied trends in the δ18O values at constant K-Ar dates for clay fractions with increase in size might be indicative of changes in the pore volume of the host rocks.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellon, H., Ellenberger, F. & Maury, R. (1974) Sur le rajeunissement de l'illite des pélites saxoniennes du bassin de Lodève. C. R. Acad. Sci., Paris, 278, 413415.Google Scholar
Blatrer, C.L. (1974) Interaction of clay minerals with saline solutions at elevated temperatures. Proc. 23rd Ann. Clay Min. Conf., Cleveland, Ohio, USA, p. 18.Google Scholar
Bonhomme, M.G. & Millot, G. (1978) Diagenèse génalisée du Jurassique moyen (170-160 Ma) dans le bassin du Rhone inférieur jusqu' à la bordure des Cévennes (France). C. R. Acad. Sci., Paris, 304 II, 431-434.Google Scholar
Bonhomme, M.G., Bühmann, D. & Besnus, Y. (1983) Reliability of K-Ar dating of clays and silicifications associated with vein mineralizations in Western Europe. Geol. Rundsch. 72, 105117.Google Scholar
Bonhomme, M.G., Yerle, J.J. & Thiry, M. (1980) Datation K-Ar de fractions fines associées aux minéralisations. Le cas du bassin uranifère permohouiller de Brousse-Broquiès (Aveyron). C. R. Acad. Sci., Paris, 291D, 121-124.Google Scholar
Bonhomme, M., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. & Winkler, R. (1975) Méthode de datation potassium-argon: appareillage et technique. Notes Tech. Inst. G∼ol. Strasbourg, 3, 53 p.Google Scholar
Brunet, M.F. & Le Pichon, X. (1982) Subsidence of the Paris Basin. J. Geophys. Res. 87, B10, 85478760.Google Scholar
Clauer, N. & Chaudhuri, S. (1995) Clays in Crustal Environments. Isotope Dating and Tracing. Springer Verlag, Heidelberg, 359 p.CrossRefGoogle Scholar
Clauer, N., O'Neil, J.R. & Furlan, S. (1995b) Clay minerals as records of temperature conditions and duration of thermal anomalies in the Paris Basin, France. Clay Miner. 30, 597609.Google Scholar
Clauer, N., Rais, N., Schaltegger, U. & Piqué, A. (1995c) K-Ar systematics of clay-to-mica minerals in a multi-stage low-grade metamorphic evolution. Chem. Geol., Isot. Geosc. Section, 124, 305–316.Google Scholar
Clauer, N., Srodon, J., Francu, J. & Šucha, V. (1995a) K-Ar dating of illite/smectite fundamental particles. Pp. 390-390a in: Euroclay'95, Clays and Clay Materials Sciences, (Elsen, A., Grobet, P., Keung, M., Leeman, H., Schoonheydt, R. & Toufar, H., editors), Leuven, August 20-24, 1995.Google Scholar
Clauer, N., Weber, F., Gauthier-Lafaye, F., Toulkeridis, T. & Sizun, J.P. (1996) Clay mineral evolution in the faulted passive carbonate margin of Ardèche, France (Balazuc 1 drill hole, Ardèche, France). J. Sedim- Res. (submitted).Google Scholar
Demars, C. & Pagel, M. (1994) Paléotempéatnres et paléosalinités darts les grès du Keuper du Bassin de Paris: inclusions fluides dans les minéraux authig∼nes. C. R. Acad. Sci., Paris, 319 II, 427-434.Google Scholar
Demrng, D. (1992) Catastrophic release of heat and fluid flow in the continental crust. Geology, 20, 83–86.Google Scholar
Eberl, D.D., Wmtney, G. & Khoury, H. (1978) Hydrothermal reactivity of smectite. Am. Miner. 63, 401-405.Google Scholar
Foster, W.R. & Custard, H.C. (1982) Role of clay composition on smectite/illite diagenesis. Am. Assoc. Petrol. Geol. Bull. 66, 1444.Google Scholar
Gaupp, R., Maiter, A., Platr, J., Ramseyer, K. & Walzebruck, J. (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, Northwest Germany. Am. Assoc. Petrol. GeoL Bull. 77, 1111–1i28.Google Scholar
Giot, D., Roure, F., Elmi, S., Lajat, D. & Steinberg, M. (1991) Découvertes d'accidents distensifs majeurs d'age jurassique sur la marge continentale du sudest, Ardèche, France (Programme GPF). C. R. AcatL Sci., Paris, 312 II, 747-754.Google Scholar
Girard, J.P., Saxon, S.M. & Aronson, J.L. (1989) Diagenesis of the lower Cretaceous arkoses of the Angola margin: petrologic, K-Ar dating and 18O/16O evidence. J. Sediment. Pet. 59, 519538.Google Scholar
Guilhaumoo, N. (1993) Paleotemperatures inferred from fluid inclusions in diagenetic cements: implications for the thermal history of the Pads Basin. Eur. J. Mineral. 5, 12171226.Google Scholar
Hillier, S. (1993) High gradient magnetic separation: Principles, application to clay minerals and laboratory manual. Inter. Rep., GeoL Inst., Univ. Bern, Switzerland, 11 pp.Google Scholar
Hower, J., Eslinger, E.V., Hower, M.. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725737.Google Scholar
Huon, S., Cornee, J.J., Pique, A., Rats, N., Clauer, N., Liewig, N. & Zayane, R. (1993) Mise en évidence au Maroc d'évènements thermiques d'age triasicoliasique liés à l'ouverture de l'Atlantique. Bull. Soc. géol. France, 164, 165176.Google Scholar
Kyser, T.K. (1987) Equilibrium fractionation factors for stable isotopes. Pp. 1–84 in: Short Course in Stable Isotope Geochemistry of Low Temperature Fluids, (Kyser, T.K., editor), Mineral. Assoc. Canada, 13.Google Scholar
Lancelot, J., Briqueu, L., Respaut, J.P. & Clauer, N. (1995) Géochimie isotopique des systèmes U-Pb/Pb-Pb et évolution polyphasée des gites d'uranium du Lodévois et du Sud du Massif Central. Chron. Rech. Min. 521, 318.Google Scholar
Ledesert, B. (1993) Fracturation et paléocirculations hydrothermales. Application au granite de Soultzsous-Foret. Thèse, Univ. Poitiers, France.Google Scholar
Ledesert, B., Joffre, J., Ambles, A., Sardini, P., Genter, A. & Meunier, A. (1996) Organic compounds: natural tracers of fluid circulations between sediments and the granite at Soultz-sous-Foret (France). Chem. Geol. (submitted).Google Scholar
Lee, M., Aronson, J.L. & Saxon, S.M. (1985) K-Ar dating of gas emplacement in Rotliegendes sandstones, Netherlands. Am. Assoc. Petrol. Geol. Bull. 69, 13811385.Google Scholar
Lee, M., Aronson, J.L.L., & Saxon, S.M. (1989) Timing and conditions of Permian Rotliegendes sandstone diagenesis, southern North Sea: K/Ar and oxygen isotope data. Am. Assoc. Petrol. Geol. Bull., 73, 195215.Google Scholar
Le Guen, M., Orgeval, J.J. & Lancelot, J. (1991) Lead isotope behaviour in a polyphased Pb-Zn ore deposit: les Malines (Cévennes, France). Min. Depos. 26, 180188.CrossRefGoogle Scholar
Lmwtg, N. (1993) Datation isotopique d'illites diagénétiques de griès réservoirs a gaz, huile et eau du Nord-Ouest de l'Europe. Implications pétrogénétiques et géodynamiques. Thèse Doe. és-Sci., Univ. Strasbourg, France.Google Scholar
Marini, D. (1986) Etude des minéralisations Zn, Pb, Ba, des conglomérats triasiques de la bordure du gisement des Malines (Gard, France). Comparaisons sedimentologique, minéralogique et géochimique des séries sulfatées et de leurs équivalents latémux a 1'aplomb des sites minéralisés. Mém. Mus. Hist. Nat., Paris, Doc. UA 1209–Nature et Genèse des milieux confinés, 9, 448 pp.Google Scholar
Mccubmn, D.G. & Patron, J.L. (1981) Burial diagenesis of illite/smectite, a kinetic model. Am. Assoc. Petrol. Geol. Bull. 65, 956.Google Scholar
Mendez Santizo, J. (1990) Diagenèse et circulations de fluides dans le gisement d'uranium de Lodève (Hérault). Thèse, Univ. Strasbourg, France.Google Scholar
Menoez Saratoo, J., Gauthier-Lafaye, F., Liewig, N., Clauer, N. & Weber, F. (1991) Existence d'un hydrothermalisme tardif dans le bassin de Lodève (Héraulo. Arguments paléothermométriques et géochronologiques. C. R. Acad. Sci., Paris, 312, 739745.Google Scholar
Mossmann, J.R. (1987) Conditions physico-chimiques d'évolution de réservoirs gréseux. Approche pétrologique, minéralogique et isotopique. Application aux grès rhétiens du bassin de Paris. Thèse, Univ. Strasbourg, France.Google Scholar
Mossmann, J.R., Clauer, N. & LIEWIé N. (1992) Dating thermal anomalies in sedimentary basins: the diagenetic history of clay minerals in the Triassic sandstones of the Paris Basin (France). Clay Miner. 27, 211226.Google Scholar
Pagel, M., Braun, J.J., Disnar, J.R., Martinez, L., Renac, C. & Vasseur, G. (1996) Thermal history constraints from organic matter, clay minerals, fluid inclusions, apatite fission tracks and stable isotope studies at the Ardèche paleo-margin (BA1 drill hole, GPF Program, France). J. Sedim. Res. (submitted).Google Scholar
Perry, E.A. & Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner. 18, 165177.Google Scholar
Platt, J.D. (1993) Controls on clay mineral distribution and chemistry in the Early Permian Rottiegend of Germany. Clay Miner. 28, 393416.Google Scholar
Rieken, R. (1988) Lösungszusammensetzung und Migrationsprozesse von Paläo-Fluidsystemen in Sedimentgesteinen des Norddeutschen Beckens. Götting. Arbeit. Z. Geol. u. Paläont. 37, 116 pp.Google Scholar
Ritter, U. (1986) Heat flow during the Carboniferous and mesozoic of the Northwest German Basin. Geol. Rundsch., 75, 293300.Google Scholar
Robinson, A.G., Coleman, M.L. & Gluyas, J.G. (1993) Age of illite cement growth, Village fields area, southern North Sea: Evidence from K-Ar ages and 18O/16O ratios. Am. Assoc. Petrol. Geol. Bull. 77, 6880.Google Scholar
Steiger, R.H. & Jager, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmogeochronology. Earth Planet. Sci. Lett. 36, 359362.Google Scholar
Toulkeridis, T., Clauer, N. & Stroll, P. (1993) Pbisotopic compositions and K-Ar dating of clay minerals associated with the Pb-Zn ores of Malines (Cévennes, France). Terra Abstr. 346.Google Scholar
Vella, V. (1989) Les chronomètres U-Pb, Rb-Sr, K-Ar appliquds a l'évolution d'un gisement uranifere en milieu sédimentaire: Cas du bassin permien de Lodève (Hérault). Thèse, Univ. Montpellier, France.Google Scholar
Zlegler, K., Sellwood, B.W. & Fallick, A.E. (1994) Radiogenic and stable isotope evidence for age and origin of aathigenic illites in the Rotliegend, southern NorthSea. Clay Miner. 29, 555565.Google Scholar
Zwingmann, H. (1995) Etude des conditions de raise en place des gaz naturels dans les réservoirs gréseux (Rotliegende d'Allemagne). Aspects minéralogiques, morphologiques, géochimiques et isotopiques. Thèse, Univ. Strasbourg, France.Google Scholar