Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T05:54:55.406Z Has data issue: false hasContentIssue false

Hydroxyl-stretching bands ‘A’ and ‘Z’ in Raman and infrared spectra of kaolinites

Published online by Cambridge University Press:  09 July 2018

S. Shoval
Affiliation:
Geology Group, The Open University of Israel, 16, Klausner St. Tel-Aviv 61392, Israel
S. Yariv
Affiliation:
Department of Inorganic and Analytical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
K. H. Michaelian
Affiliation:
Natural Resources Canada, CANMET Western Research Centre, Devon, Alberta, Canada T9G 1A8
M. Boudeulle
Affiliation:
LPCML, UMR 5620 CNRS, Université Claude Bernard Lyon 1, France
G. Panczer
Affiliation:
LPCML, UMR 5620 CNRS, Université Claude Bernard Lyon 1, France

Abstract

The high frequency OH-stretching band in micro-Raman spectra of kaolinites consistently exhibits two partly overlapping components with varying relative intensities. These bands, labelled A and Z, are located at ~3700–3690 and 3690–3680 cm-1, respectively. Band Z displays greater intensity in Raman spectra of highly crystallized kaolinites which have large coherent domains. Both components are also observed in the curve fitted infrared (IR) spectra of kaolinites; band Z is stronger in IR spectra of highly crystallized samples. Data for kaolinites with different particle size support the idea that bands A and Z are the longitudinal optic and transverse optic modes of the high frequency OH-stretching band.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beyth, M. (1988) The geological map of Umm Bugma. Curr. Res. Geol. Surv. Isr. 6, 3340.Google Scholar
Bish, D.L. (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clays Clay Miner. 41, 738744.Google Scholar
Bish, D.L. & Johnston, C.T. (1993) Rietveld refinement and Fourier transform infrared spectroscopic study of the dickite structure at low temperature. Clays Clay Miner. 41, 297304.Google Scholar
Boudeulle, M., Panczer, G. & Shoval, S. (1995) Kaolinites: Towards polytypism or interstratification? Eur. J. Mineral. 7, 31.Google Scholar
Brindley, G.W., Kao C, Harrison, J.L., Lipsicas, M. & Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner. 34, 239249.Google Scholar
Farmer, V.C. (1974) The layer silicates, Pp. 331-363 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.Google Scholar
Farmer, V.C. (1979) Infrared spectroscopy. Pp. 285-337 in: Data Handbook for Clay Materials and Other Non-metallic Minerals (Van Ophen, H. & Fripiat, J.J., editors). Pergamon Press, Oxford.Google Scholar
Farmer, V.C. (1998) Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite. Clay Miner. 33, 601604.Google Scholar
Farmer, V.C. & Russell, J.D. (1964) The infra-red spectra of layer silicates. Spectrochim. Ada, 20, 11491173.Google Scholar
Farmer, V.C. & Russell, J.D. (1966) Effects of particle size and structure on the vibrational frequencies of layer silicates. Spectrochim. Ada, 22, 389398.Google Scholar
Friesen, W.I. & Michaelian, K.H. (1986) Fourier deconvolution of photoacoustic FTIR spectra. Infrared Phys. 26, 235242.Google Scholar
Frost, R.L. (1995) Fourier transform Raman spectroscopy of kaolinite, dickite and halloysite. Clays Clay Miner. 43, 191195.Google Scholar
Frost, R.L., Fredericks, P.M. & Shurvell, H.F. (1996) Raman microscopy of some kaolinite clay minerals. Can. J. Appl. Spectrosc. 41, 1014.Google Scholar
Hayes, J.B. (1963) Kaolinite from Warsaw geodes, Keokuk region, Iowa. Iowa Acad. Sci. 70, 261272.Google Scholar
Hinckley, D.N. (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina, Pp. 229—235 in: Proc. 11th Natl. Conf., Ottawa, 1962 (Swineford, A., editor). Pergamon Press, New York.Google Scholar
Johnston, C.T., Agnew, S.F. & Bish, D.L. (1990) Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays Clay Miner. 38, 573583.CrossRefGoogle Scholar
Johnston, C.T., Sposito, G. & Birge, R.R. (1985) Raman spectroscopic study of kaolinite in aqueous suspension. Clays Clay Miner. 33, 483489.Google Scholar
Johnston, C.T., Helsen, J., Schoonheydt, R.A., Bish, D.L. & Agnew, S.F. (1998) Single-crystal Raman spectroscopic study of dickite. Am. Miner. 83, 7584.Google Scholar
Keller, W.D. (1977) Scanning electron micrographs of kaolins collected from diverse environments of origin IV. Georgia kaolin and kaolinizing source rocks. Clays Clay Miner. 25, 311345.Google Scholar
Keller, W.D., Pickett, E.E. & Reesman, A.L. (1966) Elevated dehydroxylation temperature of the Keokuk geode kaolinite - a possible reference mineral. Proc. Int. Clay Conf., Jerusalem, 75-85.Google Scholar
Ledoux, R.L. & White, J.L. (1965) Infrared studies of the hydroxyl groups in intercalated kaolinite complexes. Clays Clay Miner. 13, 289315.Google Scholar
Lombardi, G., Russell, J.D. & Keller, W.D. (1987) Composition and structural variation in the size fractions of a sedimentary and hydrothermal kaolin. Clays Clay Miner. 35, 321335.Google Scholar
Michaelian, K.H. (1986) The Raman spectrum of kaolinite #9 at 21 °C. Can. J. Chem. 64, 285289.Google Scholar
Michaelian, K.H. (1990) Step-scan photoacoustic infrared spectra of kaolinite. Infrared Phys. 30, 181 — 186.Google Scholar
Michaelian, K.H., Bukka, K. & Permann, D.N.S. (1987) Photoacoustic infrared spectra (250—10 000 cm-1 ) of partially deuterated kaolinite #9. Can. J. Chem. 65, 14201423.Google Scholar
Michaelian, K.H., Yariv, S. & Nasser, A. (1991a) Study of the interactions between caesium bromide and kaolinite by photoacoustic and diffuse reflectance infrared spectroscopy. Can. J. Chem. 69, 749754.Google Scholar
Michaelian, K.H., Friesen, W.I., Yariv, S. & Nasser, A. (1991b) Diffuse reflectance infrared spectra of kaolinite and kaolinite/alkali halide mixtures. Curve-fitting of the OH stretching region. Can. J. Chem. 69, 17861790.CrossRefGoogle Scholar
Miller, J.G. & Oulton, J.D. (1970) Prototropy in kaolinite during percussive grinding. Clays Clay Miner. 18, 313323.Google Scholar
Murray, H.H. (1988) Kaolin minerals, their genesis and occurrences. Pp. 67—89 in: Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington D.C.Google Scholar
Prost, R., Dameme, A., Huard, E., Driard, J. & Leydecker, J.P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K. Clays Clay Miner. 37, 464468.CrossRefGoogle Scholar
Pruett, R.J. & Webb, H.L. (1993) Sampling and analysis of KGa-1B well crystallised kaolin source clay. Clays Clay Miner. 41, 514519.Google Scholar
Rouxhet, P.G., Samudacheata, H., Jacobs, H. & Anton, O. (1977) Attribution of the OH stretching band of kaolinites. Clay Miner. 12, 171179.Google Scholar
Shoval, S., Boudeulle, M., Panczer, G. & Yariv, S. (1995) Raman micro-spectrometry and infrared spectroscopy study of the alteration products of trachyte sills and dykes in Makhtesh Ramon area, Israel. Pp. 325—337 in: Physics and Chemistry of Dykes (Baer, G. & Heimann, A., editors). Balkema, Rotterdam.Google Scholar
Shoval, S., Yariv, S., Boudeulle, M. & Panczer, G. (1999a) Spectroscopy study of Jurassic pisolithic laterite and flint clay, Makhtesh-Ramon, Israel. Proc. 11th Int. Clay Conf, Ottawa (in press).Google Scholar
Shoval, S., Yariv, S., Michaelian, K.H., Lapides, I., Boudeulle, M. & Panczer, G. (1999) A fifth OHstretching band in IR spectra of kaolinites. J. Coll. Interf. Sci. III, 523-529.CrossRefGoogle Scholar
Shoval, S., Yariv, S., Michaelian, K.H., Lapides, I., Boudeulle, M. & Panczer, G. (1998) Comparison of the OH stretching bands in the Raman and infrared spectra of kaolinites. Pp. 101 — 109 in: Proceedings of the 14th Conference of the Israel Association for the Advancement of Mineral Engineering (Ginzburg, D. & Minster, T., editors). Israel Association for the Advancement of Mineral Engineering, Beer- Sheva (in Hebrew).Google Scholar
van Olphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Materials and other Non-metallic Minerals. Pergamon Press, Oxford.Google Scholar
Wada, K. (1967) A study of hydroxyl groups in kaolin minerals utilising selective deuteration and infrared spectroscopy. Clay Miner. 7, 5161.Google Scholar
Wiewiora, A., Wieckowski, T. & Sokolowska, A. (1979) The Raman spectra of kaolinite sub group minerals and of pyrophyllite. Arch. Mineral. 35, 5 — 14.Google Scholar
Yariv, S. (1975a) Infrared study of grinding kaolinite with alkali metal chlorides. Powder Technol. 12, 131138.Google Scholar
Yariv, S. (1975b) Some effects of grinding kaolinite with potassium bromide. Clays Clay Miner. 23, 8082. Yariv, S. (1986) Interactions of minerals of the kaolin group with cesium chloride and deuteration of the complexes. Int. J. Trop. Agri. IV, 310—322.CrossRefGoogle Scholar