Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-06T09:20:02.501Z Has data issue: false hasContentIssue false

The Gümüşköy (Kütahya, Turkey) kaolin deposit and its ceramic properties

Published online by Cambridge University Press:  28 August 2018

Gürsel Yanık*
Affiliation:
Dumlupınar University, Department of Geological Engineering, Kütahya 43100, Turkey
Rasim Ceylantekin
Affiliation:
Dumlupınar University, Department of Material Science and Engineering, Kütahya 43100, Turkey
Eda Taşçı
Affiliation:
Dumlupınar University, Department of Material Science and Engineering, Kütahya 43100, Turkey

Abstract

The Gümüşköy kaolin clay deposit, located ~40 km northwest of Kütahya, Turkey, has promising reserves for ceramic production. In order to evaluate the potential use of this region, five representative clay samples were collected and characterized with X-ray diffraction, polarized light optical microscopy, X-ray fluorescence spectrometry, differential thermal analysis and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. According to the Chemical Index of Alteration and Plagioclase Index of Alteration, the kaolin samples were formed by strong chemical alteration of the Tavşanlı volcanites. The clays contain kaolinite, illite, pyrophyllite, montmorillonite and minor halloysite, as well as quartz, plagioclase (andesine), biotite, sanidine, rutile and goethite. The clay samples were used for thermal and physical tests. The plasticity, particle-size distributions firing properties (water absorption, apparent porosity, linear shrinkage, dry bending strength, fired bending strength) and colour parameters of the fired samples were determined. The kaolinitic clay samples from Gümüşköy are suitable for making wall tiles, floor tiles and kiln wares after shaping by dry pressing and extrusion.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Editor: George Christidis

References

REFERENCES

Aksan, S. & Urgancıoğlu, İ. (1970) Aktepe Resistivite Etüdü, Rapor No: 463. Etibank, Ankara, Turkey.Google Scholar
Aksan, S. (1971) Aktepe Resistivite Etüdü, Rapor No: 468. Etibank, Ankara, Turkey.Google Scholar
Arık, F. (2002) Gümüşköy (Kütahya) Gümüş Yatağının Jeokimyasal Modellemesi. Doctoral dissertation. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, Turkey.Google Scholar
Ataman, G. & Baysal, O. (1978) Clay mineralogy of Turkish borate deposit. Chemical Geology, 22, 233247.Google Scholar
Bennour, A., Mahmoudi, S., Srasra, E., Hatira, N., Boussen, S., Ouaja, M. & Zargouni, F. (2015) Identification and traditional ceramic application of clays from the Chouamekh region in south-eastern Tunisia. Applied Clay Science, 118, 212220.Google Scholar
Bilgen, N. (2015) Seyitömer Höyük I. Arkeoloji Sanat Yayınları, Istanbul, Turkey.Google Scholar
Bohor, B.F. (1963) High-temperature phase development in illitic clays. Clays and Clay Minerals, 12, 233246.Google Scholar
Carretero, M.I., Dondi, M., Fabbri, B. & Raimondo, M. (2002) The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic–chloritic clays. Applied Clay Science, 20, 301306.Google Scholar
Çolak, M., Helvacı, C. & Maggetti, M. (2000) Saponite from the Emet Colemanite Mines, Kütahya, Turkey. Clays and Clay Minerals, 51, 409423.Google Scholar
Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. (2014) The HighScore suite. Powder Diffraction, 29, 1318.Google Scholar
Dondi, M. (1999) Clay materials for ceramic tiles from the Sassuolo District (Northern Apennines, Italy). Geology, composition and technological properties. Applied Clay Science, 15, 337366.Google Scholar
Dondi, M., Guarini, G., Ligas, P., Palomba, M. & Raimondo, M. (2001) Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district (Western Sardinia, Italy). Applied Clay Science, 18, 145155.Google Scholar
Dondi, M. (2003) Technological and compositional requirements of clay materials for ceramic tiles. Pp. 2330 in: Proceedings of the 12th International Clay Conference, Bahía Blanca, Argentina, July 22–28, 2001 (Domínguez, E.A. Mas, G.R. & Cravero, F., editors). Elsevier, New York, NY, USA.Google Scholar
Dondi, M., Mariarosa, R. & Zanelli, C. (2014) Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 96, 91109.Google Scholar
Ece, Ö.I. & Nakagawa, Z. (2002) Bending strength of porcelains. Ceramics International, 28, 131140.Google Scholar
Eraslan, R. (1971) Aktepe 1/25.000 Ölçekli Jeoloji Etüdü, Rapor No: 424. Etibank, Ankara, Turkey.Google Scholar
Fedo, C.M., Nesbitt, H.W. & Young, G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921924.Google Scholar
Ferrari, S. & Gualtieri, A.F. (2006) The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32, 7381.Google Scholar
Fischbach, W. (1900) Kütahya-Gümüşköy Arazi Etüdü. MTA Rapor No: 374. General Directorate of Mineral Research and Exploration (MTA) Publications, Ankara, Turkey.Google Scholar
Földvári, M. (2011) Handbook of thermogravimetric system of minerals and its use in geological practice. Occasional Papers of the Geological Institute of Hungary, 213, 180.Google Scholar
Göçmez, H., Ceylantekin, R., Yanık, G., Işık, I. & Ediz, İ.G. (2004) The characterization and utilization of waste clays from Gümüşköy silver mine in brick industry. Key Engineering Materials, 264–268: 24892492.Google Scholar
Ildız, T. (1967) M.T.A. 568 ve 137 Ruhsat No'lu Kurşun Sahalarının Ön Raporu. MTA Rapor No: 4266. General Directorate of Mineral Research and Exploration (MTA) Publications, Ankara, Turkey.Google Scholar
Işık, I., Yanık, G., Aykul, H. (1997) Seyitömer (Kütahya) Kömür Havzası Killerinin Jeolojisi, Mineralojisi, 8. Ulusal Kil Sempozyumu, Kütahya, Turkey.Google Scholar
Işık, I., Göçmez, H., Yanık, G. & Ceylantekin, R. (2004) The utilization of waste clay from coal basin in the wall tile body formulation. Key Engineering Materials, 264–268: 24252428.Google Scholar
Işıklar, S. & Demirhan, M. (1982) Kütahya-Emet-Hisarcık Kaolen Yataklarının Detay Jeolojik Etüd Raporu, General Directorate of Mineral Research and Exploration (MTA) Report No. 7128 (in Turkish, unpublished).Google Scholar
Kalafatçıoğlu, A. (1962) Tavşanlı-Dağardı Arasındaki Bölgenin Jeoloji ve Serpantin ile Kalkerlerin Yaşı Hakkında Not. Bulletin of Mineral Research and Exploration, 58, 3846.Google Scholar
Konta, J. (1995) Clay and man: clay raw materials in the service of man. Applied Clay Science, 10, 275335.Google Scholar
Kumar, S.R. & Rajkumar, P. (2014) Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Physics & Technology, 67, 3041.Google Scholar
Mahmoudi, S., Bennour, A., Srasra, E. & Zargouni, F. (2017) Characterization, firing behavior and ceramic application of clays from the Gabes region in South Tunisia. Applied Clay Science, 135, 215225.Google Scholar
Modesto, C.O. & Bernardin, A.M. (2008) Determination of clay plasticity: indentation method versus Pfefferkorn method. Applied Clay Science, 40, 1519.Google Scholar
Monteiro, S.N. & Vieira, C.M.F. (2002) Characterization of clays from Campos dos Goytacazes, north Rio de Janeiro State. Tile and Brick International, 18, 152157.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd ed. Oxford University Press, New York, NY, USA.Google Scholar
Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 199, 715717.Google Scholar
Nesbitt, H.W. & Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 15231534.Google Scholar
Okut, M., Demirhan, M. & Köse, Z. (1978) Geological Report on Kaolin Occurrences in Emet-Simav (Kütahya) Region. General Directorate of Mineral Research and Exploration (MTA) Report No. 6309 (in Turkish, unpublished).Google Scholar
Özdamar, Ş., Ece, I.Ö., Kayacı, K. & Küçüker, A.S. (2007) Mineralogical and technological properties of underclays in Şile Region, İstanbul, Turkey. Industrial Ceramics, 27, 111.Google Scholar
Özker, E. (1970) Aktepe 1/25.000 Ölçekli Jeoloji Etüdü, Rapor No: 300. Etibank, Ankara, Turkey.Google Scholar
Sayın, A. (2007) Origin of kaolin deposits: evidence from the Hisarcık (Emet-Kütahya) deposits, western Turkey. Turkish Journal of Earth Sciences, 16, 7796.Google Scholar
Sei, J., Morato, F., Kraa, G., Staunton, S., Quiquampoix, H., Jumas, J.C. & Olivier-Fourcade, J. (2006) Mineralogical, crystallographic and morphological characteristics of natural kaolins from the Ivory Coast (West Africa). Journal of African Earth Sciences, 46, 245252.Google Scholar
Singh, M., Sharma, M. & Tobschall, H.L. (2005). Weathering of the Ganga alluvial plain, northern India: implications from fluvial geochemistry of the Gomati River. Applied Geochemistry, 20, 121.Google Scholar
Strazzera, B., Dondi, M. & Marsigli, M. (1997) Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12, 247266.Google Scholar
Şengör, A.C.M. (1982) Factors governing the neotectonic evolution of the Aegean. Pp. 5972 in: Panel Discussion on Neotectonics and Volcanicsm of Western Turkey, Erol, O. & Oygür, V. (editors). Geological Society of Turkey, Ankara, Turkey.Google Scholar
Şengör, A.C.M. & Yılmaz, Y. (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181241.Google Scholar
Şengör, A.M.C., Görür, N. & Şaroğlu, F. (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Pp. 227264 in: Strike-Slip Faulting and Basin Formation and Sedimentation (Biddle, K.T. & Christie-Blick, N., editors). Society of Economic Paleontologists and Mineralogists, Tulsa, OK, USA.Google Scholar
TS EN ISO 10545-3 (2000) Ceramic Tiles – Part 3. Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density. Turkish Standards Institution, Ankara, Turkey.Google Scholar
TS EN ISO 10545-4 (2014) Ceramic Tiles – Part 4. Determination of Modulus of Rupture and Breaking Strength. Turkish Standards Institution, Ankara, Turkey.Google Scholar
Türk, Y. (1975) Report on the Geology and Ceramic Raw Materials in Kurtdere and Ulaşlar Villages (Emet, Kütahya). General Directorate of Mineral Research and Exploration (MTA) Report no. 5688 (in Turkish, unpublished).Google Scholar
Türkmenoğlu, A.G. & Yavuz-Işık, N. (2008) Mineralogy, chemistry and potential utilization of clays from coal deposits in the Kütahya province, western Turkey. Applied Clay Science, 42, 6373.Google Scholar
Vıcıl, M. (1982) Gümüşköy (Kütahya) Aktepe Pb–Zn–Sb–Ag Cevherleşmesi. Doctoral thesis. Ege Üniversitesi Hemşirelik Fakültesi, İzmir, Turkey.Google Scholar
Yalçın, H. (1984) Geological, Mineralogical and Petrographic Investigation of Neogene Emet Lacustrine Basin. MSc thesis, Hacettepe University, Ankara, Turkey (in Turkish with English abstract, unpublished).Google Scholar
Yalçın, H. & Gündoğdu, M.N. (1985) Emet gölsel Neojen baseninin kil mineralojisi, Pp. 155–170 in: Proceedings of the 2nd National Clays Symposium (Gündoğdu, M.N. & Aksoy, H., editors). Hacettepe University, Beytepe-Ankara, Turkey.Google Scholar
Yanık, G., Esenli, F., Uz, V., Esenli, V., Uz, B. & Külah, T. (2010) Ceramic properties of kaolinized tuffaceous rocks in Keşan region, Thrace, NW Turkey. Applied Clay Science, 48, 499505.Google Scholar
Yanık, G. (2011) Mineralogical, crystallographic and technological characteristics of Yaylayolu kaolin (Kütahya/Turkey). Clay Minerals, 46, 397410.Google Scholar
Yanık, G., Ceylantekin, R., Taşçı, E. & Özçay, Ü. (2012) Şahin village (Kütahya) clay deposit and its possible utilization. Clay Minerals, 46, 110.Google Scholar