Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-30T00:31:03.328Z Has data issue: false hasContentIssue false

The early-Eocene climate optimum (EECO) event in the Qaidam basin, northwest China: clay evidence

Published online by Cambridge University Press:  09 July 2018

C. W. Wang
Affiliation:
State Key Laboratory of Geological Process and Mineral Resources
H. L. Hong*
Affiliation:
State Key Laboratory of Geological Process and Mineral Resources
B. W. Song
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
K. Yin
Affiliation:
State Key Laboratory of Geological Process and Mineral Resources
Z. H. Li
Affiliation:
Geosciences Department, University of Wisconsin – Parkside, Kenosha, WI 53141-2000, USA
K. X. Zhang
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
J. L. Ji
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China

Abstract

Clay mineralogy and its palaeoclimatic interpretation of the early-Eocene (∼53.3–49.70 Ma) sediments at Lulehe, Qaidam basin, northwest China, were investigated using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The interval of ∼53.3–49.70 Ma, including the early-Eocene climate optimum (EECO) with isotopic events, was the transition period of “greenhouse” to “icehouse”. Climate changes during the episode were documented in the sediments and were expressed by the proportion of clay species and clay indices, as well as by the proportion of non-clay minerals, gypsum, halite and calcite. Our results suggest that a warm and humid climate prevailed over the period ∼53.3–52.90 Ma, followed by a warm and seasonally dry and humid climate in the period ∼52.90–51.0 Ma and a subsequently warm and humid climate in the period ∼51.0–49.70 Ma. Three warmer and more humid intervals were observed at 52.7, 51.0 and 50.5 Ma based on clay indices. The climate evolution in the Qaidam Basin during the period derived from the clay mineralogical study is in good agreement with the early Eocene global climate change, and the warm and seasonally dry and humid episode in the early Eocene in Qaidam basin is a regional response to the global early-Eocene climate optimum.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bains, S., Corfield, R. M. & Norris, R.D. (1999) Mechanisms of climate warming at the end of the Paleocene. Science, 285, 724727.Google Scholar
Bowen, G.J., Beerling, D.J., Koch, P.L., Zachos, J.C. & Quattlebaum, T. (2004) A humid climate state during the Palaeocene/Eocene thermal maximum. Nature, 432, 495499.CrossRefGoogle ScholarPubMed
Cande, S.C. & Kent, D.V. (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100, 60936095.Google Scholar
Chamley, H. (1989) Pp. 2150, 623 in: Clay Sedimentology, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
DeConto, R. M. & Pollard, D. (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric COB2B . Nature, 421, 245249.Google Scholar
Dickens, G.R., Castillo, M.M. & Walker, J.C.G. (1997) A blast of gas in the latest Paleocene: Simulating firstorder effects of massive dissociation of oceanic methane hydrate. Geology, 25, 259262.2.3.CO;2>CrossRefGoogle ScholarPubMed
Drits, V.A., Sakharov, B.A., Dainyak, L.G., Salyn, A.L. & Lindgreen, H. (2002) Structural and chemical heterogeneity of illite-smectites from Upper Jurassic mudstones of East Greenland related to volcanic and weathered parent rocks. American Mineralogist, 87, 15901607.CrossRefGoogle Scholar
Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Sabbadini, R., Dai, S. & Fang, X.M. (2007) Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 445, 635638.Google Scholar
Dupont-Nivet, G., Hoorn, C. & Konert, M. (2008) Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geology, 36, 987990.Google Scholar
Dutton, A., Lohmann, K.C. & Leckie, R.M. (2005) Insights from the Paleogene tropical Pacific: Foraminiferal stable isotope and elemental results from Site 1209, Shatsky Rise. Paleoceanography, 20, PA3004, doi:10.1029/2004PA001098.CrossRefGoogle Scholar
Fagel, N., Robert, C. & Hillaire-Marcel, C. (1996) Clay mineral signature of the NW Atlantic Boundary Undercurrent. Marine Geology, 130, 1928.Google Scholar
Fang, X.M., Zhang, W.L., Meng, Q.Q., Gao, J.P., Wang, X.M. & King, J. (2007) High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam basin on the NE Tibetan Plateau, Qinghai province, China, and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258, 293306.CrossRefGoogle Scholar
Gaucher, G. (1981) Les facteurs de la pedogenese, 730 pp. Dison, Belgium, G. Lelotte.Google Scholar
Guyot, J.L., Jouanneau, J.M., Soares, L., Boaventura, G.R., Maillet, N. & Lagane, C. (2007) Clay mineral composition of river sediments in the Amazon Basin. Catena, 71, 340356.Google Scholar
Hallam, A., Grose, J. A. & Ruffell, A. H. (1991) Paleoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeography. Palaeoclimateology, Palaeoecology, 81, 173-187.Google Scholar
Hong, H.L., Li, Z.H., Xue, H.J., Zhu, Y.H., Zhang, K.X. & Xiang, S.Y. (2007a) Oligocene clay mineralogy of the Linxia Basin: evidence of paleoclimatic evolution subsequent to the initial-stage uplift of the Tibetan Plateau. Clays and Clay Minerals, 55, 492505.CrossRefGoogle Scholar
Hong, H.L., Yu, N., Xiao, P., Zhu, Y.H., Zhang, K.X. & Xiang, S.Y. (2007b) Authigenic palygorskite in Miocene sediments in Linxia basin, Gansu, northwestern China. Clay Minerals, 42, 4558.CrossRefGoogle Scholar
Hong, H.L., Zhang, K.X. & Li, Z.H. (2010) Climatic and tectonic uplift evolution since ∼7 Ma in Gyirong basin, southwestern Tibet plateau: clay mineral evidence. International Journal of Earth Sciences, 99, 13051315, doi: 10.1007/s00531-009-0457-x.CrossRefGoogle Scholar
Ivany, L.C., Patterson, W.P. & Lohmann, K.C. (2000) Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature, 407, 887890.Google Scholar
Kahle, M., Kleber, M. & Jahn, R. (2002) Review of XRDbased quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma, 109, 191205.CrossRefGoogle Scholar
Kraus, M. J. & Riggins, S. (2007) Transient drying during the Paleocene-Eocene thermal maximum (PETM): analysis of paleosols in the bighorn basin, Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 444461.Google Scholar
Lear, C.H., Elderfield, H. & Wilson, P.A. (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287, 269272.Google Scholar
Lindgreen, H. & Surlyk, F. (2000) Upper Permian-Lower Cretaceous clay mineralogy of East Greenland: provenance, paleoclimate and volcanicity. Clay Minerals, 35, 791806.Google Scholar
Liu, D.S., Zheng, M.P. & Guo, Z.T. (1998) Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in China. Quaternary Sciences, 3, 194204 (in Chinese with English abstract).Google Scholar
Liu, Z.F., Colin, C., Huang, W., Le, K.P., Tong, S.Q., Chen, Z. & Trentesaux, A. (2007) Climatic and tectonic controls on weathering in south China and Indochina Peninsula: clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems, 8, Q05005, doi:10.1029/2006GC001490.CrossRefGoogle Scholar
Meyer, B., Tapponnier, P., Bourjot, L., Metivier, F., Gaudemer, Y., Peltzer, G., Guo, S.M. & Chen, Z.T. (1998) Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 135, 1 —47.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 332 pp. Oxford University Press, Oxford.Google Scholar
Nesbitt, H. W. & Young, G. M. (1982) Early Proterozoic climates and plate motions inferred from major elements chemistry of lutites. Nature, 299, 715717.Google Scholar
Pearson, P.N., McMillan, I.K., Wade, B.S., Jones, T.D., Coxall, H.K., Bown, P.R. & Lear, C.H. (2008) Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania. Geology, 36, 179182.Google Scholar
Pei, J.L., Sun, Z.M., Wang, X.S., Zhao, Y., Ge, X.H., Guo, X.Z., Li, H.B. & Si, J.L. (2009) Evidence for Tibetan plateau uplift in Qaidam basin before Eocene-Oligocene boundary and its climatic implications. Journal of Earth Science, 20, 430437.CrossRefGoogle Scholar
Pastouret, L., Chamley, H., Delibrias, G., Duplessy, J.C. & Thiede, J. (1978) Late Quaternary climatic change in Western Tropical Africa deduced from deep-sea sedimentation of the Niger delta. Oceanological Ada, 1, 217232.Google Scholar
QHPRI (Qinghai Petroleum Research Institute) & NJGPI (Nanjing Geological and Paleontological Institute) (1985) Pp. 141 in: Tertiary Palynology of the Qaidam Basin, Petroleum Industry Press, Beijing (in Chinese).Google Scholar
QHPRI (Qinghai Petroleum Research Institute) & NJGPI (Nanjing Geological and Paleontological Institute) (1988) Pp. 136 in: Tertiary Ostrocodes of the Qaidam Basin, Nanjing University Press, Nanjing (in Chinese).Google Scholar
Robert, C. & Kennett, J.P. (1994) Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence. Geology, 22, 211214.Google Scholar
Sexton, P.F., Wilson, P.A. & Norris, R.D. (2006) Testing the Cenozoic multisite composite δ18O and δ13C curves: new monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography, 21, PA2019, doi:10.1029/2005PA001253.Google Scholar
Singer, A. (1980) The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth Science Reviews, 15, 303326.CrossRefGoogle Scholar
Sluijs, A., Brinkhuis, H., Crouch, E.M., John, C.M., Handley, L., Munsterman, D., Bohaty, S.M., Zachos, J.C., Reichart, G., Schouten, S., Pancost, R.D., Sinninghe Damste, J.S., Welters, N.L.D., Lotter, A.F. & Dickens, G.R.(2008) Eustatic variations during the Paleocene-Eocene greenhouse world. Paleoceanography, 23, PA4216, doi:10.1029/2008PA001615.CrossRefGoogle Scholar
Sun, Z.M., Yang, Z.Y., Pei, J.L., Ge, X.H., Wang, X.S., Yang, T.S., Li, W.M. & Yuan, S.H. (2005) Magneto stratigraphy of Paleogene sediments from northern Qaidam Basin, China: implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth and Planetary Science Letters, 237, 635646.CrossRefGoogle Scholar
Tang, L.H. & Di, H.S. (1991) Pp. 242 in: Fossil Charophytes from Qaidam Basin, Qinghai, Scientific and Technical Documents Publishing House, Beijing (in Chinese).Google Scholar
Tripati, A.K. & Elderfield, H. (2004) Abrupt hydrographic changes in the equatorial Pacific and subtropical Atlantic from foraminiferal Mg/Ca indicate greenhouse origin for the thermal maximum at the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems, 5, 2003GC000631.Google Scholar
Vanderaveroet, P. (2000) Miocene to Pleistocene clay mineral sedimentation on the New Jersey shelf. Oceanologica Ada, 23, 2536.Google Scholar
Verrecchia, E.P. & Le Coustumer, M.N. (1996) Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, SDE Boqer, Negev desert, Israel. Clay Minerals, 31, 183202.Google Scholar
Wan, X.Q., Wang, X., Yu, T. & Li, G.B. (2006) The global Paleocene/Eocene thermal maximum event in the Gamba area, Tibet. Earth Science Frontiers, 13, 218226 (Chinese with English abstract).Google Scholar
Wang, J., Wang, Y.J., Liu, Z.C., Li, J.Q. & Xi, P. (1999) Cenozoie environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeography, Palaeo climatology, Palaeoecology, 152, 3747.Google Scholar
Wang, S.J., Huang, X.Z., Minda, R., Li, J.Q. & Zhao, D.S. (1997) The transverse distributive regularity and its controlling factors of clay minerals in Tertiary System, Qaidam Basin. Ada Sedimentologica Sinica, 15, 153157 (Chinese with English abstract).Google Scholar
Warr, L.N. & Rice, A.H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141-52.Google Scholar
Westerhold, T. & Rohl, U. (2009) High resolution cyclo stratigraphy of the early Eocene — new insights into the origin of the Cenozoie cooling trend. Climate of the Past, 5, 309327.Google Scholar
Winkler, A., Wolf-Welling, T., Stattegger, K. & Thiede, J. (2002) Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG). International Journal of Earth Sciences, 91, 133148.CrossRefGoogle Scholar
Wu, H.N., Liu, C.Y., Zhang, X.H. & Ren, Z.L. (1997) Paleomagnetic constraints on the tectonic evolution of the Qaidam block. Science in China Series D: Earth Sciences, 27, 914 (Chinese with English abstract).Google Scholar
Yin, A., Dang, Y.Q., Wang, L.C., Jiang, W.M., Zhou, S.P. Chen, X.H., Gehrels, G.E. & McRivette, M.W. (2008) Cenozoie tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. Geological Society of America Bulletin, 120, 813846.Google Scholar
Young, G.M. & Nesbitt, H.W. (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary Research, 68, 448455.Google Scholar
Zachos, J.C., Quinn, T.M. & Salamy, K.A. (1996) Highresolution (10 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography, 11, 251266.Google Scholar
Zachos, J.C., Pagani, M., Sloan, L., Ellen, T. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686693.CrossRefGoogle ScholarPubMed
Zachos, J.C., Wara, M.W., Bohaty, S., Delaney, M.L., Petrizzo, M.R., Brill, A., Bralower, T.J. & Premoli-Silva, I. (2003) A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science, 302, 15511554.Google Scholar
Zachos, J.C., Rohl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I. & Lourens, L.J. (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science, 308, 16111615.Google Scholar
Zanazzi, A., Kohn, M.J., MacFadden, B.J. & Terry, D.O. (2007) Large temperature drop across the Eocene-Oligocene transition in central North America. Nature, 445, 639642.Google Scholar
Zhang, K.X., Wang, G.C., Cao, K., Liu, C., Xiang, S.Y., Hong, H.L., Kou, X.H., Xu, Y.D., Chen, F.N., Meng, Y.N. & Chen, R.M. (2008) Cenozoie sedimentary records and geochronological constraints of differential uplift of the Qinghai-Tibet Plateau. Science in China Series D: Earth Sciences, 51, 16581672.CrossRefGoogle Scholar
Zhang, K.X., Wang, G.C., Ji, J.L., Luo, M.S., Kou, X.H., Wang, Y.M., Xu, Y.D., Chen, F.N., Chen, R.M. & Song, B.W. (2010) Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai- Tibet Plateau and their response to uplift of the plateau. Science in China, Series D: Earth Sciences, 53, 12711294.Google Scholar
Zhang, W.L. (2006) High-resolution Cenozoie magneto stratigraphy of the Qaidam Basin and Qinghai- Tibet Plateau uplift. In: Song, C.H. (2006) Tectonic uplift and Cenozoie sedimentary evolutionin the northern margin of the Tibetan Plateau, PhD Thesis, Lanzhou University, Lanzhou, China (in Chinese).Google Scholar