Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-19T05:15:40.404Z Has data issue: false hasContentIssue false

Disorder induced by de-intercalation of DMSO from kaolinite

Published online by Cambridge University Press:  09 July 2018

L. Heller-Kallai
Affiliation:
Institute of Earth Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
E. Huard
Affiliation:
Station de Science du Sol, INRA, Route de Saint Cyr, 78026 Versailles Cedex, France
R. Prost
Affiliation:
Station de Science du Sol, INRA, Route de Saint Cyr, 78026 Versailles Cedex, France

Abstract

De-intercalation of DMSO from well-crystallised kaolinites induced disorder. SEM, XRD and low-temperature IR were used to probe changes in morphology, layer stacking, and the environment of OH groups, respectively. The degree and type of disorder depended on the starting material and on the method of removing the intercalate. Rapid removal by heating at 250°C caused smaller changes than more prolonged heating at lower temperature, or washing with water.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M. & Waltl, G. (1980) Thermal decomposition of a kaolinite: dimethylsulfoxide intercalate Clays Clay Miner., 28, 130–134.Google Scholar
Anton, O. & Rouxet, P.G. (1977) Note on the intercalation of kaolinite, dickite and halloysite by dimethylsulphoxide Clays Clay Miner., 25, 259–263 Google Scholar
Bookin, A.S., Dritz, V.A., Plançon, A. & Tchoubar, C. (1989) Stacking faults in the kaolin-group minerals in the light of real structural features. Clays Clay Miner., 37, 297–307.Google Scholar
Cruz, M., Laycock, Z. & White, J.L. (1969) Perturbation of OH groups in intercalated kaolinite donor-acceptor complexes. I. Formamide-, methyl formamide-, and dimethyl formamide-kaolinite complexes. Proc. Int. Clay Conf. Tokyo, 1, 775–789.Google Scholar
Hinckley, D.N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner., 11, 229–235.Google Scholar
Jacobs, H. & Sterckx, M. (1970) Contribution a Tetude de i'interaction du DMSO dans le r^seau de la kaolinite. Pp. 154160 in: Proc. Reunion Hispano-Belge Miner. Arg., Madrid(J.M. Serratosa, editor). Cons. Super. Invest. Cient., Madrid.Google Scholar
Lipsicas, M., Raythatha, R., Giese, R.F. & Constanzo, P.M. (1986) Molecular motions, surface interactions, and stacking disorder in kaolinite intercalates. Clays Clay Miner., 34, 635–644.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L.A.G., Posner, A.M. & Quirk, J.P. (1968) Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes. J. Phys. Chem., 72, 241–249.Google Scholar
Prost, R., Dameme, A., Huard, E. & Driard, J. (1987) Infrared study of structural OH in kaolinite, dickite and nacrite at 300 to 5 K. Proc. int. Clay Conf. Denver,, 1723.Google Scholar
Prost, R., Dameme, A., Huard, E., Driard, J. & Leydecker, J.P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600 K. Clays Clay Miner., 37, 464–468.Google Scholar
Raupach, M., Barron, P.F. & Thompson, J.G. (1987) Nuclear magnetic resonance, infrared, and X-ray powder diffraction study of dimethylsulfoxide and dimethylselenoxide intercalates with kaolinite. Clays Clay Miner., 35, 208–219.Google Scholar
Robertson, R.H.S., Brindley, G.W. & Mackenzie, R.C. (1954) Mineralogy of kaolin clays from Pugu, Tanganyika. Am. Miner., 39, 118–138.Google Scholar
Thompson, J.G. & Cuff, C. (1985) Crystal structure of kaolinite: dimethylsulfoxide intercalate. Clays Clay Miner., 33, 490–500.Google Scholar