Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T16:56:52.935Z Has data issue: false hasContentIssue false

Dickite in shallow oil reservoirs from Recôncavo Basin, Brazil: diagenetic implications for basin evolution

Published online by Cambridge University Press:  09 July 2018

J. De Bona
Affiliation:
Institute of Geosciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
N. Dani
Affiliation:
Institute of Geosciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
J. M. Ketzer
Affiliation:
Pontifical Catholic University of Rio Grande do Sul, PUC-RS, Porto Alegre, RS, Brazil
L. F. De Ros*
Affiliation:
Institute of Geosciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil

Abstract

Fluvial and aeolian sandstones of the Sergi Formation are the most important reservoirs of the Recôncavo Basin, Brazil. Optical and scanning electron microscopy, X-ray diffraction and infrared spectroscopy revealed the occurrence of dickite, a clay mineral indicative of deep burial conditions (T >100ºC), in the shallow Buracica (630–870 m) and Água Grande (1300–1530 m) oilfields. Vermicular dickite replaces K-feldspar and plagioclase grains, and fills intra- and inter-granular pores. Its vermicular habit is a product of pseudomorphic kaolinite transformation during burial. The presence of dickite is in accordance with the intensity of compaction, post-compactional quartz cementation and δ18O values of calcite cements (T up to 109ºC). These petrological features of deep burial, as well as apatite fission-track analyses, indicate that uplift and erosion of at least 1 km, and probably >1500 m, affected the central part of the Recôncavo Basin and possibly the entire region. This uplift has not been detected previously by conventional structural and stratigraphic models.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Structures of layer silicates. Pp. 1123 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Beaufort, D., Cassagnabere, A., Petit, S., Lanson, B., Berger, G., Lacharpagne, J.C. & Johansen, H. (1998) Kaolinite to dickite reaction in sandstone reservoirs. Clay Minerals, 33, 297316.Google Scholar
Bjørlykke, K. & Egeberg, P.K. (1993) Quartz cementation in sedimentary basins. The American Association of Petroleum Geologists Bulletin, 77, 15381548.Google Scholar
Brindley, G.W., Kao, C.C., Harrison, J.L., Lipsicas, M. & Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239249.Google Scholar
Bruhn, C.H.L. & De Ros, L.F. (1987) Formação Sergi: evolução de conceitos e tendências na geologia de reservatórios. Boletim de Geociências da PETROBRAS, 1, 2540.Google Scholar
Burley, S.D. (1993) Models of burial diagenesis for deep exploration plays in Jurassic fault traps of the Central and Northern North Sea. Pp. 13531375 in: Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (Parker, J.R., editor). The Geological Society, London.Google Scholar
Burley, S.T. & MacQuaker, J.H.S. (1992) Authigenic clays, diagenetic sequences and conceptual diagenetic models in contrasting basin-margin and basin-center North Sea Jurassic sandstones and mudstones. Pp. 81110 in: Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittman, E.D., editors). SEPM Special Publication, Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, USA.CrossRefGoogle Scholar
Caixeta, J.M., Bueno, G.V., Magnavita, L.P. & Feijó, F.J. (1994) Bacias do Recôncavo, Tucano e Jatobá. Boletim de Geociências da PETROBRAS, 8, 163172.Google Scholar
Cassagnabère, A. (1998) Caractérisation et interprétation de la transition kaolinite-dickite dans les reservoirs à hydrocarbures de Froy et Rind (Mer du Nord), Norvège. PhD thesis, University of Poitiers, France.Google Scholar
Cassan, J.P. & Lucas, J. (1966) La diagenèse des grès argileux d’Hassi-Messaoud (Sahara): Silicification et dickitisation. Bulletin Service Carte Géologie Alsace Lorraine, 19, 241253.Google Scholar
Craig, H. (1957) Isotopic standards for carbon and oxygen correction factors for mass spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta, 12, 133149.Google Scholar
Craig, H. (1961) Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133, 18331934.Google Scholar
Cupertino, J.A. (2000) Evolução Tectono-climática na Fase Rifte das Bacias de Camamu, Parte Norte, e Sul do Recôncavo, com Enfase na Utilização de Isótopos Estáveis e Traços de Fissão. Tese de Doutorado em Geociências, Universidade Federal do Rio Grande do Sul. Porto Alegre, Vol. 1, 249 pp.Google Scholar
De Ros, L.F. (1987) Petrologia e Características de Reservatório da Formação Sergi (Jurássico) no Campo de Sesmaria, Bacia do Recôncavo, Brasil. Ciência-Técnica-Petróleo, Seção: Exploração de Petróleo. Vol. 19, Rio de Janeiro, Brazil, PETROBRAS/CENPES, 107 pp.Google Scholar
De Ros, L.F. (1988) Diagênese de arenitos: progressos e dúvidas. Congresso Brasileiro de Geologia. Anais. Belém, SBG, 35, 917930.Google Scholar
De Ros, L.F., Morad, S. & Paim, P.S.G. (1994) The role of detrital composition and climate on the diagenetic evolution of continental molasses: evidence from the Cambro-Ordovician Guaritas Sequence, southern Brazil. Sedimentary Geology, 92, 197228.Google Scholar
De Ros, L.F., Morad, S., Broman, C., Césero, P. & Gomez-Gras, D. (2000) Influence of uplift and magmatism on distribution of quartz and illite cementation: evidence from Siluro-Devonian sandstones of the Parana Basin, Brazil. Pp. 231252 in: Quartz Cementation in Sandstones (Worden, R. & Morad, S., editors). IAS Special Publication 29, Oxford, International Association of Sedimentologists, Blackwell Science, UK.Google Scholar
De Ros, L.F. & Scherer, C.M.S. (in press) Stratigraphic controls on the distribution of diagenetic processes, quality and heterogeneity of fluvial-aeolian reservoirs from the Recôncavo Basin, Brazil. In: Linking Diagenesis to Sequence Stratigraphy of Sedimentary Rocks (Morad, S., Ketzer, J.M. & De Ros, L.F., editors). IAS Special Publication, 41. International Association of Sedimentologists, Blackwell Publishing, UK.Google Scholar
Dutta, P.K. & Suttner, L.J. (1986) Alluvial sandstone composition and paleoclimate, II. Authigenic mineralogy. Journal of Sedimentary Petrology, 56, 346358.Google Scholar
Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. & Duthie, D.M.L. (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian Continental shelf. Clay Minerals, 28, 325352.Google Scholar
Eldholm, O. (1991) Magmatic-tectonic evolution of a volcanic rifted margin. Marine Geology, 102, 4361.Google Scholar
Ferrero, J. & Kübler, B. (1964) Présence de dickita dans les grés cambriens d’Hassi-Messaoud. Bulletin Service Carte Géologie Alsace Lorraine, 17, 247261.Google Scholar
Figueiredo, A.M.F., Braga, J.A.E., Zabalaga, J.C., Oliveira, J.J., Aguiar, G.A., Silva, O.B., Mato, L.F., Daniel, L.M.F., Magnavita, L.P. & Bruhn, C.H.L. (1994) Recôncavo Basin, Brazil: a Prolific Intracontinental Rift Basin. Pp. 157203 in: Interior Rift Basins (Landon, S.M., editor). American Association of Petroleum Geologists, (AAPG Memoir, 59), Tulsa, Oklahoma, USA.Google Scholar
Friedman, I. & O’Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. P. 12 in: Data of Geochemistry (Fleischer, M., editor). 6th Edition, USGS Professional paper.Google Scholar
Fugita, A.M. (1974) A geomorfologia da superfície de discordância pré-Aptiana na Bacia de Sergipe e sua relação com os campos de óleo. 28° Congresso Brasileiro de Geologia. Sociedade Brasileira de Geologia. Porto Alegre, Anais, 1, 121-135.Google Scholar
Garcia, A.J.V., Morad, S., De Ros, L.F. & Al-Aasm, I.S. (1998) Paleogeographical, paleoclimatic and burial history controls on the diagenetic evolution of Lower Cretaceous Serraria sandstones in Sergipe-Alagoas Basin, NE Brazil. Pp. 107140 in: Carbonate Cementation in Sandstones (Morad, S., editor). IAS Special Publication, 26. International Association of Sedimentologists, Blackwell Scientific Publications, Oxford, UK.Google Scholar
Gianelli, G. & Teklemarian, M. (1993) Water-rock interaction processes in the Aluto-Langano geothermal field (Ethiopia). Journal of Volcanology and Geothermal Research, 56, 429445.CrossRefGoogle Scholar
Girard, J.P., Deynoux, M. & Nahon, D. (1989) Diagenesis of the Upper Proterozoic siliciclastic sediments of the Taoudeni Basin (West Africa) and relation to diabase emplacement. Journal of Sedimentary Petrology, 59, 233248.Google Scholar
Glasmann, J.R., Clark, R.A., Larter, S., Briedis, N.A. & Lundegard, P.D. (1989) Diagenesis and hydrocarbon accumulation, Brent Sandstones (Jurassic), Bergen High, North Sea. The American Association of Petroleum Geologists Bulletin, 73, 13411360.Google Scholar
Glennie, K.W. (1995) Permian and Triassic rifting in northwest Europe. Pp. 15 in: Permian and Triassic Rifting in Northwest Europe (Bold, S.A.R., editor). Special Publication 91, Geological Society, London.Google Scholar
Gluyas, J.G., Grant, S.M. & Robinson, A.G. (1993) Geochemical evidence for a temporal control on sandstone cementation. Pp. 2333 in: Diagenesis and Basin Development (Horbury, A. & Robinson, A., editors). AAPG Studies in Geology, 36, Oklahoma, USA.Google Scholar
Guggenheim, S., Alietti, A., Drits, V.A., Formoso, M.L.L., Galán, E., Koster, H.M., Paquet, H., Watanabe, T., Bain, D.C. & Hudnall, W.H. (1997) Report of the Association internationale pour l’étude des argiles (AIPEA) —Nomenclature Committee for 1996. Clays and Clay Minerals, 45, 298300.CrossRefGoogle Scholar
Inoue, A., Velde, B., Meunier, A. & Touchard, G. (1988). Mechanism of illite formation during smectite-toillite conversion of hydrothermal orgin. American Mineralogist, 73, 13251334.Google Scholar
Kessler, L.G. (1978) Diagenetic sequence in ancient sandstones deposited under desert climatic conditions. Journal of the Geological Society, 135, 4149.CrossRefGoogle Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 289494 in: Diagenesis in Sediments and Sedimentary Rocks 2 (Larsen, G. & Chilingar, G.V., editors). Developments in Sedimentology 25B, Elsevier, Amsterdam.Google Scholar
Kogure, T., Inoue, A. & Beaufort, D. (2005) Polytype and morphology analyses of kaolin minerals by electron back-scattered diffraction. Clays and Clay Minerals, 53, 201210.Google Scholar
Land, L.S. & Fisher, R.S. (1987) Wilcox sandstone diagenesis, Texas Gulf Coast: a regional isotopic comparison with the Frio Formation. Pp. 219235 in: Diagenesis of Sedimentary Sequences (Marshall, J.D., editor). Special Publication 36, Geological Society, London.Google Scholar
Landon, S.M. (1994) Interior Rift Basins. P. 276 in: AAPG Memoir (Coury, A.B., editor) 59. The American Association of Petroleum Geologists, Tulsa, Oklahoma, USA.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpagne, J.C. (1996) Illitization of diagenetic kaolinite to dickite conversion series: late-stage diagenesis of the Lower Permian Rotliegend sand-stone reservoir, offshore of the Netherlands. Journal of Sedimentary Research, 66, 501518.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A. & Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37, 122.Google Scholar
Lanzarini, W.L. & Terra, G.J.S. (1989) Facies sedimentares, evolução da porosidade e qualidade de reservatorio da Formação Sergi, campo de Fazenda Boa Esperança, Bacia do Recôncavo. Boletim de Geociências da PETROBRAS, 3, 365375.Google Scholar
Lima, R.D. & De Ros, L.F. (2003) The role of depositional setting and diagenesis on the reservoir quality of Late Devonian sandstones from the Solimoãs Basin, Brazilian Amazonia. Marine and Petroleum Geology, 19, 10471071.Google Scholar
McAulay, G.E., Burley, S.D. & Johnes, L.H. (1993) Silicate mineral authigenesis in the Hutton and NW Hutton fields: implications for sub-surface porosity development. Pp. 13771394 in: Petroleum Geology of Northwest Europe (Parker, J.R., editor). The Geological Society, London.Google Scholar
McAulay, G.E., Burley, S.D., Fallick, A.E. & KusznirN.J. (1994) Palaeohydrodynamic fluid flow regimes during diagenesis of the Brent Group in the Hutton-NW Hutton reservoirs: constraints from oxygen isotope studies of authigenic kaolin and reverse flexural modelling. Clay Minerals, 29, 609626.Google Scholar
McBride, E.F. (1989) Quartz cement in sandstones: a review. Earth Science Reviews, 26, 69112.Google Scholar
McBride, E.F., Land, L.S. & Mack, L.E. (1987) Diagenesis of eolian and fluvial feldspathic sand-stones, Norphlet Formation (Upper Jurassic), Rankin County, Mississippi, and Mobile County, Alabama. The American Association of Petroleum Geologists Bulletin, 71, 10191034.Google Scholar
McDowell, S.D. & Paces, J.B. (1985) Carbonate alteration minerals in the Salton Sea geothermal system, California, USA. Mineralogical Magazine, 49, 469479.Google Scholar
Milani, E.J. (1987) Aspectos da evolução tectônica das bacias do Recôncavo e do Tucano Sul, Bahia, Brasil. Ciência-Técnica-Petróleo. Seção: Exploração de Petróleo. PETROBRAS/CENPES, Rio de Janeiro, 19, 61 pp.Google Scholar
Milani, E.J. & Davidson, I. (1988) Basement control and transfer tectonics in Recôncavo-Tucano-Jatobá rift, northeast Brazil. Tectonophysics, 154, 4070.CrossRefGoogle Scholar
Milani, E.J., Lana, M.C. & Szatmari, P. (1987) Mesozoic rift basins around the NE Brazilian Microplate. Pp. 126 in: Triassic-Jurassic Rifting and the Opening of the Atlantic Ocean (Manspeizer, W., editor) Elsevier, Amsterdam.Google Scholar
Morad, S., Ketzer, J.M. & De Ros, L.F. (2000) Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology, 47, 95120.Google Scholar
Moraes, M.A.S. & De Ros, L.F. (1990) Infiltrated clays in fluvial Jurassic sandstones of Recôncavo Basin, northeastern Brazil. Journal of Sedimentary Petrology, 60, 809819.Google Scholar
Moraes, M.A.S. & De Ros, L.F. (1992) Depositional, infiltrated and authigenic clays in fluvial sandstones of the Jurassic Sergi Formation, Recôncavo Basin, northeastern Brazil. Pp. 197208 in: Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittman, E.W., editors) SEPM Special Publication 47, Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, USA.Google Scholar
Netto, A.S.T. & Oliveira, J.J. (1985) O preenchimento do rift-valley na Bacia do Recôncavo. Revista Brasileira de Geociências, 15, 97102.Google Scholar
Netto, A.S.T., Barroso, A.S., Bruhn, C.H.L., Caixeta, J.M. & Moraes, M.A.S. (1982) Projeto Andar Dom João. Salvador, PETROBRAS/DEPEX/DEXBA, 193 pp. (internal report).Google Scholar
Osborne, M., Haszeldine, M.R. & Fallick, A.E. (1994) Variation in kaolinite morphology with growth temperature in isotopically mixed pore-fluid, Brent Group, UK North Sea. Clay Minerals, 29, 591608.Google Scholar
Parnell, J. (2004) Kaolin polytype evidence for a hotfluid pulse along Caledonian thrusts during rifting of the European Margin. Mineralogical Magazine, 68, 419432.Google Scholar
Penteado, H.L.B. (1999) Modelação Composicional 2D da Genese, Expulsão e Migração do Petróleo no Compartimento sul da Bacia do Recôncavo, Brasil. PhD Thesis, l’Université Pierre et Marie Curie, Paris.Google Scholar
Pitman, J.K., Henry, M. & Seyler, B. (1998) Reservoir quality and diagenetic evolution of Upper Mississippian rocks in the Illinois Basin: influence of a regional hydrothermal fluid flow event during late diagenesis. Geological Survey Professional Paper, 1597, 24 pp.Google Scholar
Polster, W. & Barnes, H.L. (1994) Comparative hydrodynamic and thermal characteristics of sedimentary basins and geothermal systems in sediment-filled rift valleys. Pp. 437457 in: Basin Compartments and Seals (Ortoleva, P.J., editor). AAPG Memoir 61. The American Association of Petroleum Geologists, Tulsa, Oklahoma, USA.Google Scholar
Prost, R., Damene, A., Huard, E., Driard, J. & Leydecker, J.P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600 . Clays and Clay Minerals, 37, 464468.CrossRefGoogle Scholar
Rohrman, M., Van Der Beek, P. & Andriessen, P. (1994) Syn-rift thermal structure and post-rift evolution of the Oslo Rift (southeast Norway): new constraints from fission track thermochronology. Earth and Planetary Science Letters, 127, 3954.CrossRefGoogle Scholar
Rossel, N.C. (1982) Clay mineral diagenesis in Rotliegend aeolian sandstones of the southern North Sea. Clay Minerals, 17, 6977.Google Scholar
Ruiz Cruz, M.D. & Reyes, E. (1998) Kaolinite and dickite formation during shale diagenesis: isotopic data. Applied Geochemistry, 13, 95104.Google Scholar
Russell, J.D. (1987) Infrared methods. Pp. 133173 in: A Handbook of Determinative Methods in Clay Mineralogy (Wilson, M.J., editor). Blackie, Glasgow, UK.Google Scholar
Santos, C.F., Cupertino, J.A. & Braga, J.A.E. (1990) Síntese sobre a geologia das bacias do Recôncavo, Tucano e Jatobá. Pp. 269289 in: Origem e Evolução de Bacias Sedimentares (Raja Gabaglia, G.P. & Milani, E.J., editors). PETROBAS, Rio de Janeiro, Brazil.Google Scholar
Scherer, C.M.S., Lavina, E.L.C., Dias Filho, D.C., Oliveira, F.M., Bongiolo, D.E. & Aguiar, E.S. (2007) Stratigraphy and facies architecture of the fluvialaeolian- lacustrine Sergi Formation (Upper Jurassic), Recôncavo Basin, Brazil. Sedimentary Geology, 194, 169193.Google Scholar
Schiffman, P., Bird, D.K. & Elders, W.A. (1985) Hydrothermal mineralogy of calcareous sandstones from the Colorado River delta in the Cerro Prieto geothermal system, Baja California, Mexico. Mineralogical Magazine, 49, 435449.Google Scholar
Searl, A. (1994) Diagenetic destruction of reservoir potential in shallow marine sandstones of the Broadford Beds (Lower Jurassic), north-west Scotland: depositional versus burial and thermal history controls on porosity destruction. Marine and Petroleum Geology, 11, 131147.CrossRefGoogle Scholar
Simeone, R., Dilles, J.H., Padalino, G. & Palomiba, M. (2005) Mineralogical and stable isotope studies of kaolin deposits; shallow epithermal systems of western Sardinia, Italy. Economic Geology, 100, 115130.CrossRefGoogle Scholar
Summer, N.S. & Verosub, K.L. (1992) Diagenesis and organic maturation of sedimentary rocks under volcanic strata, Oregon. American Association of Petroleum Geologists Bulletin, 76, 11901199.Google Scholar
Surdam, R.C., Crossey, L.J., Hagen, E.S. & Heasler, H.P. (1989) Organic-inorganic interactions and sandstone diagenesis. The American Association of Petroleum Geologists Bulletin, 73, 123.Google Scholar
Szatmari, P., Milani, E.J., Lana, M.C., Conceição, J.C.L. & Lobo, A.P. (1985) How South Atlantic rifting affects Brazilian oil reserves distribution. Oil and Gas Journal, 83, 107113.Google Scholar
Thomas, M. (1986) Diagenetic sequence and K/Ar dating in Jurassic sandstones, Central Viking Graben: Effects of reservoir properties. Clay Minerals, 21, 695710.Google Scholar
Tilley, B.J. & Longstaffe, F.J. (1989) Diagenesis and isotopic evolution of porewaters in the Alberta Deep Basin: The Falher Member and Cadomin Formation. Geochimica et Cosmochimica Acta, 53, 25292546.Google Scholar
Truesdell, A.H., Thompson, J.M., Coplen, T.B., Nehring, N.L. & Janik, C.J. (1981) The origin of the Cierro Prieto geothermal brine. Geothermics, 10, 225238.Google Scholar
Tucker, M.E. (1995) Techniques in Sedimentology. Blackwell Science, London. 394 pp.Google Scholar
Walderhaug, O. (1994a) Temperatures of quartz cementation in Jurassic sandstones from the Norwegian Continental Shelf - evidence from fluid inclusions. Journal of Sedimentary Research, A64, 311323.Google Scholar
Walderhaug, O. (1994b) Precipitation rates for quartz cement in sandstones determined by fluid-inclusion microthermometry and temperature-history modelling. Journal of Sedimentary Research, A64, 324333.Google Scholar
Walker, T.R. (1976) Diagenetic origin of continental red beds. Pp. 240282 in: The Continental Permian in Central, West and South Europe (Falke, H., editor). D. Reidel Publishing, Dordrecht, The Netherlands.Google Scholar
Walker, T.R., Waugh, B. & Crone, A.J. (1978) Diagenesis in first-cycle desert alluvium of Cenozoic age, southwestern United States and northwestern Mexico. Geological Society of America Bulletin, 89, 1932.Google Scholar
Waugh, B. (1978) Diagenesis in continental red beds as revealed by scanning electron microscopy: a review. Pp. 329346 in: Scanning Electron Microscopy in the Study of Sediments (Whalley, W.B., editor). Geoabstracts, Norwich, UK.Google Scholar
Whitney, G. (1990) Role of water in the smectite-to-illite reaction. Clays and Clay Minerals, 38, 343350.Google Scholar
Wood, J.R. & Boles, J.R. (1991) Evidence for episodic cementation and diagenetic recording of seismic pumping events, North Coles Levee, California, U.S.A. Applied Geochemistry, 6, 509521.CrossRefGoogle Scholar
Worden, R. & Morad, S. (2003) Clay minerals in sandstones: controls on formation, distribution and evolution. Pp. 341 in: Clay Cements in Sandstones (Worden, R.H. & Morad, S.). IAS Special Publication 34, International Association of Sedimentologists, Blackwell Scientific Publications, Oxford, UK.Google Scholar
Zimmerle, W. & Rösch, H. (1991) Petrogenetic significance of dickite in European sedimentary rocks. Zentralblatt fur Geologie und Palaontologie, 1, 11751196.Google Scholar