Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T10:45:18.670Z Has data issue: false hasContentIssue false

Conversion of protonic magadiite to PLS-1 zeolite: thermal stability and acidity

Published online by Cambridge University Press:  02 January 2018

Fethi Kooli*
Affiliation:
Department of Chemistry, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawwarah, Saudi Arabia
Jacques Plevert
Affiliation:
Institute of High Performance Computing, 1 Science Park Road #01-01, Singapore 117528
Yan Liu
Affiliation:
Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833
Kais Hbaieb
Affiliation:
Department of Engineering, Taibah University, P.O. Box 443, Al-Madinah Al-Munawwarah, Saudi Arabia
Rawan Al-Faze
Affiliation:
Department of Chemistry, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawwarah, Saudi Arabia

Abstract

A synthetic protonic magadiite was used as a silica source to prepare zeolitic material (PLS-1) in the presence of tetramethylammonium hydroxide and water. The conversion of the protonic magadiite to the PLS-1 phase was achieved at 150°C after 5 days, or at 170°C after 3 days for SiO2: TMAOH:H2O molar ratios of 2.54:1:4.4. The synthesis of the pure PLS-1 phase depended also on the amounts of tetramethylammonium hydroxide and water used. Analysis by 29Si magic angle spinning nuclear magnetic resonance spectroscopy confirmed the layered character of the PLS-1 phase with a resonance at −93 ppm, and its dehydroxylation-condensation process. The chemical formula of (TMA)2Si18O33(OH)6 for PLS-1 was refined with the Rietveld method and the tetrahedron-splitting model. The later model has been proposed to describe the presence of silanol defects in the layered structure of PLS-1. Upon calcinations of the PLS-1 phase at temperatures >400°C, the removal of TMA cations and dehydroxlyation of PLS-1 layers resulted in a three-dimensional structure phase identified as the CDS-1 phase, with a chemical formula of Si18O36. The CDS-1 phase exhibited a large specific surface area of 288 m2/g and microporous character, as indicated by the nitrogen adsorption isotherms. The temperature-programmed desorption profile of ammonia indicated that CDS-1 exhibited one weak type of acid sites, confirmed, by pyridine desorption studies, as weak Lewis acid sites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoni, T., Subotic, B., Kaucic, V. & Thompson, R.W. (1999) Study of the influence of the silica source on the properties of silicate solutions and particulate properties of zeolite X. Studies in Surface Sciences and Catalysis, 125, 1320.Google Scholar
Asakura, Y., Osada, S., Hosaka, N., Terasawa, T. & Kuroda, K. (2014) Optimal topotactic conversion of layered octosilicate to RWR-type zeolite by separating the formation stages of interlayer condensation and elimination of organic guest molecules. Dalton Transactions, 43, 1039210395.CrossRefGoogle ScholarPubMed
Bagnasco, G. (1996) Improving the selectivity of NH3 TPD measurements. Journal of Catalysis, 159, 249252.Google Scholar
Bhat, R.N. & Kumar, R. (1990) Synthesis of zeolite beta using silica gel as a source of SiO2 . Journal of Chemical Technology and Biotechnology, 48, 45366.CrossRefGoogle Scholar
Bi, Y., Blanchard, J., Lambert, I.E., Millot, Y., Casale, S., Zeng, S., Nie, H. & Li, D. (2012) Role of the Al source in the synthesis of aluminum magadiite. Applied Clay Science, 57, 7178.CrossRefGoogle Scholar
Boukadir, D., Bettahar, N. & Derriche, Z. (2002) Synthesis of zeolites 4 A and HS from natural materials. Annales de Chimie - Science des Materiaux, 27, 113.Google Scholar
Brenner, S., McCusker, L.B. & Baerlocher, Ch. (2002) The application of structure envelopes in structure determination from powder diffraction data. Journal of Applied Crystallography, 35, 243252.CrossRefGoogle Scholar
Burton, A.W. (2007) A priori phase prediction of zeolites: Case study of the structure-directing effects in the synthesis of MTT-type zeolites. Journal of the American Chemical Society, 129, 76277637.Google Scholar
Burton, A.W. & Zones, S.I. (2007) Organic molecules in zeolite synthesis: Their preparation and structure-directing effects. Studies in Surface Science and Catalysis, 168, 137179.Google Scholar
Buzzoni, R., Bordiga, S., Ricchiardi, G., Lamberti, C. & Zecchina, A. (1996) Interaction of pyridine with acidic (H-ZSM5, H-β, H-MORD zeolites) and superacidic (H-Nafion membrane) systems: An IR investigation. Langmuir, 12, 930940.Google Scholar
Cañizares, P., Durán, A., Dorado, F. & Carmona, M. (2000) The role of sodium montmorillonite on bounded zeolite-type catalysts. Applied Clay Science, 16, 273287.Google Scholar
Cui, M., Wang, Y., Liu, X., Sun, J., Lv, N. & Meng, C. (2014) Solvothermal conversion of magadiite into zeolite omega in a glycerol-water system. Journal of Chemical Technology and Biotechnology, 89, 41924.Google Scholar
Cundy, C.S. & Cox, P.A. (2004) The hydrothermal synthesis of zeolites: history and development from the earliest to the present time. Chemical Review, 103, 663701.Google Scholar
Cundy, C.S. & Cox, P.A. (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Materials, 82, 178.Google Scholar
Den Ouden, C.J.J., Datema, K.P., Vissar, F., Mackay, M. & Post, M.F.M. (1991) On the dynamics of organic-zeolite interactions: tetramethylammonium in sodalite. Zeolites, 11, 418424.Google Scholar
Dhainaut, J., Daou, J., Bidal, Y., Bats, N., Harbuzaru, H., Lapisardi, A., Chaumeil, A., Defoin, A., Rouleau, L. & Patarinb, I. (2013) One-pot structural conversion of magadiite into MFI zeolite nanosheets using mononi-trogen surfactants as structure and shape-directing agents. Crystal Engineering Communications, 15, 30093015.Google Scholar
Dutta, P.K., Barco, B. & Shieh, D.C. (1986) Raman spectroscopic studies of the tetramethylammonium ion in zeolite cages. Chemistry and Physics Letters, 127, 200204.Google Scholar
Eypert-Blaison, C., Humbert, B., Michot, L.J., Pelletier, J.M., Sauzéat, E. & Villiéras, F. (2001) Structural role of hydration water in Na- and H-magadiite: A spectroscopic study. Chemistry of Materials, 13, 44394446.Google Scholar
Fan, W., Shirato, S., Gao, F., Ogura, M. & Okubo, T. (2006) Phase selection of FAU and LTA zeolites by controlling synthesis parameters. Micropororous and Mesoporous Materials, 89, 227234.CrossRefGoogle Scholar
Gontier, S. & Tuel, A. (1996) Synthesis of titanium silicalite-1 using amorphous SiO2 as silicon source. Zeolites, 16, 184195.Google Scholar
Gregg, S.J. & Sing, K.S.W. (1982) Adsorption, Surface Area and Porosity. Academic Press, London, 154 pp.Google Scholar
Günter , E. (2007) Silicon-29 NMR of solid silicates. In: Encyclopedia of Magnetic Resonance (R.K. Harris & R. Wasylishen, editors in chief). John Wiley-Blackwell, Oxford, UK.Google Scholar
Hamidi, F., Bengueddach, A., Di Renzo, F. & Fajula, F. (2003) Control of crystal size and morphology of mordenite. Catalysis Letters, 87, 149152.Google Scholar
Hamilton, K.E., Coker, E.N., Sacco, A. Jr., Dixon, A.G. & Thompson, R.W. (1993) The effects of the silica source on the crystallization of zeolite NaX. Zeolites, 13, 645653.CrossRefGoogle Scholar
Hong, S.B. (1995) Raman spectra of tetramethylammo-nium ion-containing molecular sieves. Microporous Materials, 4, 309317.CrossRefGoogle Scholar
Ikeda, T., Akiyama, Y., Oumi, Y., Kawai, A. & Mizukami, F. (2004) The topotactic conversion of a novel layered silicate into a new framework zeolite. Angewandte Chemie, International Edition, 43, 4892896.Google Scholar
Ikeda, T., Kayamori, S. & Mizukami, F. (2009) Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19, 55185525.Google Scholar
Kalipcilar, H. & Culfaz, A. (2001) Influence of nature of silica source on template-free synthesis of ZSM-5. Crystal Research and Technology, 36, 11971207.3.0.CO;2-D>CrossRefGoogle Scholar
Karami, D. & Rohani, S. (2009) A novel approach for the synthesis of zeolite Y. Industrial and Engineering Chemistry Research, 48, 48374843.Google Scholar
Kawai, A., Urabe, Y., Itoh, T. & Mizukami, F. (2010) Immobilization of isysozyme on the layered silicate RUB-15. Materials Chemistry and Physics, 122, 269272.Google Scholar
Khabtou, S., Chevreau, T. & Lavalley, J.C. (1994) Quantitative infrared study of the distinct acidic hydroxyl groups contained in modified Y zeolites. Microporous Materials, 3, 133148.Google Scholar
Kim, S.J., Kim, M.H., Seo, G. & Uh, Y.S. (2012) Preparation of tantalum-pillared magadiite and its catalytic performance in Beckmann rearrangement. Research Chemistry and Intermediate, 38, 11811190.Google Scholar
Kondo, J.N., Nishitani, R., Yoda, E., Yokoi, T., Tatsumi, T. & Domen, K. (2010) A comparative IR characterization of acidic sites on HY zeolite by pyridine and CO probes with silica-alumina and γ-alumina references. Physical Chemistry Chemical Physics, 7, 1157611586.Google Scholar
Kooli, F. & Yan, L. (2009) Thermal stable cetyl trimethylammonium-magadiites: influence of the surfactant solution type. Journal of Physical Chemistry C, 113, 19471952.CrossRefGoogle Scholar
Kooli, F., Mizukami, F., Kiyozumi, Y. & Akiyama, Y. (2001a) Hydrothermal conversion of Na-magadiite to a new silicate layered structure in a TMAOH-water-1,4-dioxane system. Journal of Materials Chemistry, 11, 19461950.Google Scholar
Kooli, F., Kiyozumi, Y. & Mizukami, F. (2001b) Conversion of protonated magadiite to a crystalline microporous silica phase via a new layered silicate. ChemPhysChem, 2, 549551.Google Scholar
Kooli, F., Kiyozumi, Y., Rives, V. & Mizukami, F. (2002) Synthesis and textural characterization of a new microporous silica material. Langmuir, 18, 4103110.Google Scholar
Kooli, F., Yan, L., Alshahateet, S.F., Siril, P. & Brown, R. (2008) Effect of pillared clays on the hydroisomeriza-tion of n-heptane. Catalysis Today, 131, 244249.Google Scholar
Kooli, F., Yan, L., Hbaieb, K. & Al-Faze, R. (2016a) Characterization and catalytic properties of porous clay hetero structures from zirconium-intercalated clay and its pillared derivatives. Microporous and Mesoporous Materials, 226, 48292.Google Scholar
Kooli, F., Yan, L., Hbaieb, K. & Al Faze, R. (2016b) A novel synthetic route to obtain RUB-15 phase by pseudo solid-state conversion. Microporous and Mesoporous Materials, 228, 116122.CrossRefGoogle Scholar
Kresnawahjuesa, O., Gorte, R.J., de Oliveira, D. & Lau, L.Y. (2002) A simple, inexpensive, and reliable method for measuring Brønsted-acid site densities in solid acids. Catalysis Letters, 82, 155160.Google Scholar
Lagaly, G., Beneke, K. & Weiss, A. (1975) Magadiite and H-magadiite: II. H-magadiite and its intercalation compounds. American Mineralogist, 60, 650658.Google Scholar
Lee, S.R., Han, Y.S., Park, M., Park, C.S. & Choy, J.H. (2003) Nanocrystalline sodalite from Al2O3 pillared clay by solid-solid transformationn. Chemistry of Materials, 15, 4841845.Google Scholar
Li, Q., Mihailova, B., Creaser, D. & Sterte, J. (2000) The nucleation period for crystallization TPA-silicalite-1 with varying silica source. Microporous and Mesoporous Materials, 40, 5362.Google Scholar
Li, Q.H., Mihailova, B., Creaser, D. & Sterte, J. (2001) Aging effects on the nucleation and crystallization kinetics of colloidal TPA-silicalite-1. Microporous and Mesoporous Materials, 43, 5159.Google Scholar
Li, C.P., Huang, C.M., Hsieh, M.T. & Wei, K.H. (2005) Properties of covalently bonded layered-silicate/polystyrene nanocomposites synthesized via atom transfer radical polymerization. Journal of Polymer Science. Part A. Polymer Chemistry, 43, 534542.Google Scholar
Marler, B., Wang, Y., Song, J. & Gies, H. (2014) Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates. Dalton Transactions, 43, 1039610416.Google Scholar
Moura, M.H. & Pastore, H.O. (2014) Functionalized mesoporous solids based on magadiite and [Al]-magadiite. Dalton Transactions, 43, 1047110483.CrossRefGoogle ScholarPubMed
Niwa, M. & Katada, N. (2013) New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review. The Chemical Record, 13, 43255.Google Scholar
Oberhagemann, U., Bayat, P., Marler, B., Gies, H. & Rius, J. (1996) A layer silicate: Synthesis and structure of the zeolite precursor RUB-15- [N (CH3)4]8[Si24O52(OH)4].20H2O. Angewandte Chemie, International edition, 23-24, 28692872.Google Scholar
Ogawa, M., Yamamoto, M. & Kuroda, K. (2002) Intercalation of an amphiphilic azobenzene derivative into the interlayer space of a layered silicate, magadiite. Clay Minerals, 36, 263266.CrossRefGoogle Scholar
Ouasri, A., Rhandour, A., Dhamelincourt, M.C., Dhamelincourt, P. & Mazzah, A. (2002) Vibrational study of (CH3)4NSbCl6 and [(CH3)4N]2SiF6 . Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 58, 27792788.Google Scholar
Pál-Borbély, G., Beyer, H.K., Kiyozumi, Y. & Mizukami, F. (1997) Recrystallization of magadiite varieties iso- morphically substituted with aluminum to MFI and MEL zeolites. Microporous Materials, 11, 4551.CrossRefGoogle Scholar
Park, K.W., Jung, J.H., Seo, H.J. & Kwon, O.Y. (2009) Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane. Microporous Mesoporous Materials, 121, 219225.Google Scholar
Pinar, A.B., Gómez-Hortigüela, L. & Pérez-Pariente, J. (2007) Cooperative structure directing role of the cage-forming tetramethylammonium cation and the bulkier benzylmethylpyrrolidinium in the synthesis of zeolite ferrierite. Chemistry of Materials, 19, 56175626.CrossRefGoogle Scholar
Ríos, C.A., Williams, C.D. & Fullen, M.A. (2009) Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Applied Clay Science, 42, 446454.Google Scholar
Ruiz, R., Blanco, C., Pesquera, C., Gonzalez, F., Benito, I. & Lopez, J.L. (1997) Zeolitization of a bentonite and its application to the removal of ammonium ions from waste water. Applied Clay Science, 12, 7383.Google Scholar
Selvam, T., Bandarapu, B., Mabande, G.T.P.H., Toufar, H. & Schwieger, W. (2003) Hydrothermal transformation of a layered sodium silicate, kanemite, into zeolite Beta (BEA). Microporous and Mesoporous Materials, 64, 4150.CrossRefGoogle Scholar
Selvam, T., Inayat, A. & Schwieger, W. (2014) Reactivity and applications of layered silicates and layered double hydroxides. Dalton Transactions., 43, 1036510387.Google Scholar
Solânea, F., Ramos, O., de Pietre Mendelssom, K. & Pastore, H.O. (2013) Lamellar zeolites: an oxymoron. Royal Society of Chemistry Advances, 3, 20842111.Google Scholar
Suk-Bong, H. (1995) Raman spectra of tetramethylammonium ion-containing molecular sieves. 4, 309317.Google Scholar
Wang, Y., Shang, Y., Wu, J., Zhu, J., Yang, Y. & Meng, C. (2010a) Recrystallization of magadiite into offretite in the presence of tetramethylammonium cations. Journal of Chemical Technology and Biotechnology, 85, 279282.CrossRefGoogle Scholar
Wang, Y., Wu, J., Zhu, J., Yang, Y., Qi, L., Ji, S. & Meng, C. (2010b) The influence of short-chain tetraalkylammo-nium cations on the recrystallization of magadiite into zeolites. Microporous and Mesoporous Materials, 135, 143146.Google Scholar
Warzywoda, J., Dixon, A.G., Thompson, R.W. & Sacco, A. Jr. (1995) Synthesis and control of the size of large mordenite crystals using porous silica substrates. Journal of Materials Chemistry, 5, 10191025.Google Scholar
Warzywoda, J., Dixon, A.G., Thompson, R.W., Sacco, A. Jr. & Suib, S.L. (1996) The role of the dissolution of silicic acid powders in aluminosilicate synthesis mixtures in the crystallization of large mordenite crystals. Zeolites, 16, 125137.Google Scholar
Werner, P.E., Eriksson, L. & Westdahl, M. (1985) TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18, 367370.Google Scholar
Wiersema, G.S. & Thompson, R.W. (1996) Nucleation and crystal growth of analcime from clear alumino silicate solutions. Journal of Materials Chemistry, 6, 16931699.Google Scholar
Xue, T., Liu, H. & Wang, Y.M. (2015) Synthesis of hierarchical ferrierite using piperidine and tetramethylammonium hydroxide as cooperative structure-directing agents. Royal Society of Chemistry Advances, 5, 1213112138.Google Scholar
Yin, X., Li, Z., Wang, S., Chu, N., Yang, J. & Wang, J. (2015) Hydrothermal synthesis of hierarchical zeolite T aggregates using tetramethylammonium hydroxide as a single template. Microporous and Mesoporous Materials., 201, 247257.Google Scholar