Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T16:45:30.538Z Has data issue: false hasContentIssue false

Clay minerals in hydrothermally altered basalts from Middle Atlas, Morocco

Published online by Cambridge University Press:  09 July 2018

A. Dekayir
Affiliation:
Department of Geology, Faculty of Sciences, P.O. Box 4010, Bni M'hamed, Meknes, Morocco
M. Amouric*
Affiliation:
CRMCN-CNRS, Campus de Luminy, Case 913, 13288 Marseille cedex 9, France
J. Olives
Affiliation:
CRMCN-CNRS, Campus de Luminy, Case 913, 13288 Marseille cedex 9, France

Abstract

Clay minerals occur as replacements of olivine, pyroxenes, plagioclase and interstitial materials, and as vesicle fillings, in altered basalts from the Middle Atlas (Morocco). Phyllosilicates are the main components of this alteration process. They have been characterized here by optical microscopy, X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy as saponite, talc, corrensite and chlorite. The homogeneity of the chemical compositions of these phyllosilicates, in different alteration environments, probably means that they are controlled by the composition of the hydrothermal fluid. Talc-saponite-corrensite (with dominant saponite) is the clay mineral association most frequently observed (corrensite being more abundant in the vesicular levels of the basalts). Such an association, with no evidence of albite and zeolite, suggests that these basalts have suffered minimal alteration at relatively low temperatures. Another association, chlorite-corrensite, was detected in a deeper (vesicular) sample, probably resulting from a slightly higher temperature. Lastly, only discrete phyllosilicates (i.e. no random mixed-layer minerals) were observed. This suggests that near-equilibrium conditions prevailed during this alteration stage and that a dissolution-crystallization process was the main mechanism of transformation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alt, J.C., Honnorez, J., Laverne, C. & Emmermann, R. (1986) Hydrothermal alteration of 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504 B: mineralogy, chemistry, and evolution of seawater-basalt interactions. Journal of Geophysical Research, 91, 1030910335.Google Scholar
Alt, J.C., Anderson, T.F., Bonnell, L. & Muchlenbachs, K. (1989) Mineralogy, chemistry, and stable isotopic compositions of hydrothermally altered sheeted dikes: ODP Hole 504 B, Leg 11. Proceedings of the Ocean Drilling Program, Scientific Results, 111, 2739.Google Scholar
Amouric, M. & Parron, C. (1985) Structure and growth mechanism of glauconite as seen by high-resolution transmission electron microscopy. Clays and Clay Minerals, 33, 473-482.CrossRefGoogle Scholar
Amouric, M., Baronnet, A. & Finck, C. (1978) Polytypisme et désordre dans les micas dioctaédriques synthétiques; étude par imagerie de réseau. Materials Research Bulletin, 13, 627634.Google Scholar
Andrews, A.J. (1980) Saponite and celadonite in layer 2 basalts, DSDP Leg 37. Contributions to Mineralogy and Petrology, 73, 323340.Google Scholar
Beaufort, D., Baronnet, A., Lanson, B. & Meunier, A. (1997) Corrensite: a single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). American Mineralogist, 82, 109124.Google Scholar
Bertrand, H. (1991) The Mesozoic tholeiitic province of Northwest Africa: a volcano-tectonic record of early opening of central Atlantic. Pp. 147-188 in: Magmatism in Extensional Structural Setting. The Phanerozoic African Plate (Kampanzu, A.B. & Lubala, R.T., editors). Springer Verlag, Berlin.Google Scholar
Bertrand, H., Dostal, J. & Dupuy, C. (1982) Geochemistry of early Mesozoic tholeiites from Morocco. Earth and Planetary Science Letters, 58, 225239.Google Scholar
Cliff, G. & Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203-207.Google Scholar
Dekayir, A. (2000) Altérations des basaltes triasiques et quaternaires du Moyen Atlas: analyse des processus et bilans de transferts de matiére. Thèse de Doctorat ès-sciences, Univ. Moulay Ismail, Meknes, Morocco.Google Scholar
Dekayir, A., Danot, M. & Allali, N. (2002) Apports des phyllosilicates dans la différentiation entre altération hypogène et al tération supergène dans le basalte triasique du Moyen Atlas (Maroc). Comptes Rendu Géoscience, 334, 877-884.CrossRefGoogle Scholar
Delvigne, D., Bisdom, E.B.A., Sleeman, J. & Stoops, G. (1979) Olivines, their pseudomorphs and secondary products. Pedologie XXIX, 3, 247309.Google Scholar
Frey, M. & Robinson, D. (1999) Low-grade Metamorphism. Blackwell Science, Oxford, UK, 313 pp.Google Scholar
Hamidi, E.M., Boulangé, B. & Colin, F. (1997) Altération d'un basalte triasique de la région d'El Hajeb, Moyen Atlas, Maroc. Journal of African Earth Sciences, 24, 141151.Google Scholar
Honnorez, J. (1981) The aging of the oceanic crust at low temperature. Pp. 525-588 in: The Sea, Oceanic Lithosphere, vol. 7 (C. Emiliani, editor). John Wiley and sons, New York.Google Scholar
Inoue, A. & Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. American Mineralogist, 76, 628640.Google Scholar
Kamel, S., Bouabid, R., Boulangé, B. & Colin, F. (1996) Paléoaltérations hydrothermale et supergène dans un basalte triasique du Moyen Atlas, Maroc. Journal of African Earth Sciences, 23, 225235.Google Scholar
Kempton, P.D., Autio, L.K., Rhodes, J.M., Holdaway, M.J., Dungan, M.A. & Johnson, P. (1985) Petrology of basalts from Hole 504 B, Deep Sea Drilling Project, Leg 83. Initial Reports of the Deep Sea Drilling Project, 83, 129164.Google Scholar
Klimentidis, R.E. & Mackinnon, I.D.R. (1986) Highresolution imaging of ordered mixed-layer clays. Clays and Clay Minerals, 34, 155164.Google Scholar
Mossu, R. (1954) Les basaltes permo-triasiques á indices cupriferes de cuivre d'Agourir et de Sidi Tiar (haute Moulouya). Notes et Mémoires du Service Géolique du Maroc, 10, n°122, 109-123.Google Scholar
Murakami, T., Sato, T. & Inoue, A. (1999) HRTEM evidence for the process and mechanism of saponiteto-chlorite conversion through corrensite. American Mineralogist, 84, 10801087.CrossRefGoogle Scholar
Reynolds, R.C. (1988) Mixed-layer chlorite minerals. Pp. 601-629 in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Schifftnan, P. & Staudigel, H. (1995) The smectite to chlorite transition in a fossil seamount hydrothermal system: the basement complex of Las Palmas, Canary Islands. Journal of Metamorphic Geology, 13, 487498.Google Scholar
Seyfried, W.E. & Bischoff, J.L. (1979) Low temperature basalt alteration by seawater: an experimental study at 70°C and 150°C. Geochimica et Cosmochimica Ada, 43, 19371947.Google Scholar
Shau, Y.H. & Peacor, D.R. (1992) Phyllosilicates in hydrothermally altered basalts from DSDP hole 504 B, Leg 83 - a TEM and AEM study. Contributions to Mineralogy and Petrology, 112, 119–133.CrossRefGoogle Scholar
Tömasson, J. & Krismannsdottir, H. (1972) Hightemperature alteration minerals and thermal brines. Reykjanes, Iceland. Contributions to Mineralogy and Petrology, 37, 235247.Google Scholar
Walters, S.G. & Ineson, P.R. (1983) Clay minerals in the basalts of south Pennines. Mineralogical Magazine, 47, 21-26.Google Scholar