Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T16:47:12.013Z Has data issue: false hasContentIssue false

Clay mineral mixtures as alteration products in pillow basalts from the eastern flank of Juan de Fuca Ridge: a TEM-AEM study

Published online by Cambridge University Press:  09 July 2018

G. Giorgetti*
Affiliation:
Dipartimento di Scienze della Terra, Università di Siena, Via Laterina 8, 53100 Siena, Italy
P. Marescotti
Affiliation:
Dipartimento per lo Studio del Territorio e delle sue Risorse, C.so Europa, 26, 16132, GenovaItaly
R. Cabella
Affiliation:
Dipartimento per lo Studio del Territorio e delle sue Risorse, C.so Europa, 26, 16132, GenovaItaly
G. Lucchetti
Affiliation:
Dipartimento per lo Studio del Territorio e delle sue Risorse, C.so Europa, 26, 16132, GenovaItaly

Abstract

Transmission electron microscope-analytical electron microscope analyses have been carried out on secondary minerals from pillow basalts with various degrees of alteration from the Juan de Fuca Ridge (ODP Leg 168). The electron microscopic data indicate that the alteration products consist mainly of phyllosilicate mixtures. The least altered sample shows poorly crystalline phyllosilicates occurrring as flakes with 10 Å -spaced lattice fringes. They have compositions of celadonite mixed with smectite and/or Fe oxyhydroxides and Mg-rich smectite. Proceeding towards older, more altered basalts, the alteration products consist of: (1) poorly crystalline celadonite mixtures and Mg-rich smectite; and (2) phyllosilicates with a higher degree of crystallinity, showing lattice fringes with 9.1 Å -spacing and with a talc-like composition. Changes in phyllosilicate association occur as the type of alteration changes from an oxidizing, water-dominated system (occurrence of celadonite mixtures with Fe hydroxides) to a reducing, rock-dominated system (occurrence of Fe-smectite and talc-like mixtures).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alt, J.C. (1999) Very low-grade hydrothermal metamorphism of basic igneous rocks. Pp. 169201 in: Low-Grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science Ltd, Oxford.Google Scholar
Alt, J.C. & Honnorez, J. (1984) Alteration of the upper oceanic crust, DSDP Site 417: mineralogy and chemistry. Contrib. Mineral. Petrol. 87, 149169.Google Scholar
Alt, J.C., Honnorez, J., Laverne, C. & Emmermann, R. (1986a) Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry, and evolution of seawate r- basalt interac tions. J. Geophys. Res. 91, 1030910335.Google Scholar
Alt, J.C., Muehlenbachs, K. & Honnorez, J. (1986b) An oxygen isotopic profile through the upper kilometer of oceanic crust, DSDP Hole 504B. Earth. Planet. Sci. Lett. 80, 217229.Google Scholar
Andrews, A.J. (1980) Saponite and celadonite in Layer 2 basalts, DSDP Leg 37. Contrib. Mineral. Petrol. 73, 323340.CrossRefGoogle Scholar
Böhlke, J.K., Honnorez, J. & Honnorez-Guerstein, B.-M. (1980) Alteration of basalts from Site 396B, DSDP: Petrographic and mineralogical studies. Contrib. Mineral. Petrol. 73, 341364.Google Scholar
Davis, E.E. & Currie, R.G. (1993) Geophysical observation of the northern Juan de Fuca Ridge system: lesson in sea-floor spreading. Canad. J. Earth Sci. 30, 278300.Google Scholar
Davis, E.E., Fisher, A.T., Firth, J.V. et al. (1997) Hydrothermal circulation in the oceanic crust: Eastern flank of the Juan de Fuca Ridge Sites 1023 1032. Proc. ODP, Init. Repts., 168: College Station, TX (Ocean Drilling Program).Google Scholar
Honnorez, J., Laverne, C., Hubberten, H.-W., Emmermann, R. & Muehlenbachs, K. (1983) Alteration processes in Layer 2 basalts from Deep Sea Drilling Project Hole 504B, Costa Rica Rift. Pp. 509546 in. Init. Repts DSDP, 69 (Cann, J.R., Langseth, M.G. et al., editors). US Govt. Printing Office, Washington D.C. Google Scholar
Hunter, A.G., Kempton, P.D. & Greenwood, P. (1999) Low-temperature fluid-rock interaction: an isotopic and mineralogical perspective of upper crustal evolution, eastern flank of the Juan de Fuca Ridge (JdFR), ODP Leg 168. Chem. Geol. 155, 328.CrossRefGoogle Scholar
Johnson, H.P. & Holmes, M.L. (1989) Evolution in plate tectonics: a study of the Juan de Fuca Ridge. Pp. 7379 in: The Eastern Pacific Ocean and Hawaii (Winterer, E.L., Hussong, D.M. & Decker, R.E., editors). Geology of North America Series, N. Geological Society of America.Google Scholar
Laverne, C., Belarouchi, A. & Honnorez, J. (1996) Alteration mineralogy and chemistry of the upper oceanic crust from Hole 896A, Costa Rica Rift. Pp. 151170 in. Proc. ODP, Sci. Results, 148 (Alt, J.C., Kinoshita, H., Stokking, L.B., & Michael, P.J., editors). US Govt. Printing Office, Washington, D.C.Google Scholar
Li, G., Peacor, D.R., Merriman, R.J. & Roberts, B. (1994) The diagenetic to low grade metamorphic evolution of matrix white micas in the system muscoviteparagonite in a mud-rock from central Wales, United Kingdom. Clays Clay Miner., 42, 369381.Google Scholar
Li, G., Peacor, D.R., Coombs, D.S. & Kawachi, Y. (1997) Solid solution in the celadonite family: The new minerals ferroceladonite, K2Fe2 2+Fe2 3+Si8O20(OH)4, and ferroaluminoceladonite K2Fe2 2+Al2Si8O20(OH)4 . Am. Miner. 82, 503511.Google Scholar
Marescotti, P., Vanko, D.A. & Cabella, R. (2000) From oxidizing to reducing alteration: Mineralogical variations in pillow basalts from the East Flank, Juan de Fuca Ridge. Pp. 119136 in. Proc. ODP, Sci. Results, 168 (Fisher, A., Davis, E.E., & Escutia, C., editors). US Govt. Printing Office, Washington, D.C.Google Scholar
Porter, S., Vanko, D.A. & Ghazi, A.M. (2000) Major and trace element compositions of secondary clays in basalts altered at low temperature, eastern flank of the Juan de Fuca Ridge. Pp. 149157 in. Proc. ODP, Sci. Results, 168 (Fisher, A., Davis, E.E., & Escutia, C., editors). US Govt. Printing Office, Washington, D.C.Google Scholar
Schandl, E.S. & Gorton, M.P. (1995) Phyllosilicate alteration of olivine in the lower sheeted dike complex, Leg 140, Hole 504B. Pp. 207216 in. Proc. ODP, Sci. Results, 137/140 (Erzinger, J., Becker, K., Dick, H.J.B. & Stokking, L.B., editors). US Govt. Printing Office, Washington D.C. Google Scholar
Shau, Y.-H. & Peacor, D.R. (1992) Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 a TEM and AEM study. Contrib. Mineral. Petrol. 112, 119133.Google Scholar
Teagle, D.A.H., Alt, J.C., Bach, W., Hallyday, A.N. & Erzinger, J. (1996) Alteration of upper oceanic crust in a ridge-flank hydrothermal upflow zone: mineral, chemical, and isotopic constraints from Hole 896A. Pp. 119150 in. Proc. ODP, Sci. Results, 148 (Alt, J.C., Kinoshita, H., Stokking, L.B. & Michael, P.J., editors). US Govt. Printing Office, Washington D.C. Google Scholar