Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T03:23:14.777Z Has data issue: false hasContentIssue false

Aggregation in Na-, K-, and Ca-montmorillonite dispersions, characterized by impedance spectroscopy

Published online by Cambridge University Press:  09 July 2018

G. Roy
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS–INPL Pôle de l'Eau, 15, Avenue du Charmois, BP 40, 54501 Vandœuvre-les-Nancy Cedex
M. Pelletier
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS–INPL Pôle de l'Eau, 15, Avenue du Charmois, BP 40, 54501 Vandœuvre-les-Nancy Cedex
F. Thomas*
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS–INPL Pôle de l'Eau, 15, Avenue du Charmois, BP 40, 54501 Vandœuvre-les-Nancy Cedex
C. Despas
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement, UMR 7592 CNRS, Université H. Poincaré Nancy I, 405, rue de Vandœuvre, 54600 Villers-les-Nancy, France
J. Bessière
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement, UMR 7592 CNRS, Université H. Poincaré Nancy I, 405, rue de Vandœuvre, 54600 Villers-les-Nancy, France

Abstract

Montmorillonite-water-cation systems were characterized using high-frequency impedance spectroscopy by studying the influence of the solid concentration and the nature of the exchangeable cation (Na+, K+, Ca2+) on the dielectric characteristics of the dispersions. A new method is proposed to calculate the relaxation frequency (fr) and the dispersion factor (α) from a limited number of impedance measurements. By comparison with rheology, microscopy, X-ray diffraction and immersion calorimetry results, it is shown that impedance spectroscopy is a very powerful technique which yields structural information on a complex system. For Na-montmorillonite, two transitions are observed at 2.5% and 3.6% in solids. The cation mobility and the number of connections between particles are described by fr and α, respectively. The two transitions can then be attributed to the formation of the gel and to the reduction of the macroporosity within the gel, respectively. For Ca-montmorillonite, thick layer-stacks form at the lowest concentrations, and connections between these stacks are observed at 9% in solids, in good aggrement with rheological measurements. The K-montmorillonite displays progressive thickening of the tactoids, and no formation of a unique connected network, as revealed by the smooth evolution of fr and α.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.C. (1966) Diélectriques. Monographie Dunod, Paris.Google Scholar
Avery, R.G. & Ramsay, J.D.F. (1985) Colloidal proper ties of synthetic hectorite clay dispersions. II. Light and small angle neutron scattering. J. Coll. Interf. Sci. 109, 448–454.Google Scholar
Barnes, H.A. & Walters, K. (1985) The yield stress myth. Rheol. Ada, 2, 323–326.Google Scholar
Ben Ohoud, M. & Van Damme, H. (1990) La texture fractale des argiles gonflantes. C. R. Acad. Sci. Paris, Série II, 311, 665–670.Google Scholar
Ben Rhaiem, H., Tessier, D. & Pons, C.H. (1986) Comportement hydrique et évolution structurale et texturale des montmorillonites au cours d'un cycle de dessication-humectation.Google Scholar
Partie, I. Cas des montmorillonites calciques. Clay Miner. 21, 9–29.Google Scholar
Ben Rhaiem, H., Pons, C.H. & Tessier, D. (1987) Factors affecting the micro structure of smectites: role of cation and history of applied stresses. Proc. Int. Clay Conf. Denver, 292-297.Google Scholar
Berend, I. (1991) Les mécanismes d'hydratation de montmorillonites homoioniques pour des pressions relatives inferieures á 0,95. PhD thesis, INPL, Nancy, France.Google Scholar
Berend, I., Cases, J.M., François, M., Uriot, J.P., Michot, L., Massion, A. & Thomas, F. (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites. 2. The Li+, Na+, K+, RB+ and Cs+-exchange forms. Clays Clay Miner. 43, 324–336.Google Scholar
Bessiere, J. & Etahiri, A. (1993) Dielectric analysis of xanthate adsorption on galena in the presence of dextrin. Int. J. Miner. Process. 38, 125–139.CrossRefGoogle Scholar
Cases, J.M., Berend, I., Francois, M., Uriot, J.P., Michot, L. & Thomas, F. (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 3. The Mg++, Ca++, Sr++ and Ba++ exchanged forms. Clays Clay Miner. 45, 8–22.CrossRefGoogle Scholar
Chang, F.R.C. & Sposito, G. (1994) The electrical double layer of a disk-shaped clay mineral particle. Effect of particle size. J. Coll. Interf. Sci. 163, 19–27.Google Scholar
Chen, J.C., Cushman, J.H. & Low, P.F. (1990) Rheologieal behavior of Na-montmorillonite suspensions at low electrolyte concentration. Clays Clay Miner. 38, 57–62.Google Scholar
Delville, A. (1991) Modeling the clay-water interface. Langmuir, 7, 547–555.CrossRefGoogle Scholar
Dukhin, S.S. & Shilov, V.N. (1974) Dielectric Phenomena and the Double-layer in Disperse Systems and Poly electrolytes. John Wiley & Sons, Chichester, UK.Google Scholar
Ennis, J. & White, L.R. (1996a) Dynamic Stern layer contribution to the frequency-dependent mobility of a spherical colloid particle. A low-zeta-potential analytic solution. J. Coll. Interf. Sci. 178, 446–459.Google Scholar
Ennis, J. & White, L.R. (1996b) High-frequency asymptotic expansion for the electrokinetic properties of a spherical colloid particle with dynamic Stern layer. J. Coll. Interf. Sci. 178, 460–470.Google Scholar
Faisandier, K., Pons, C.H., Tchoubar, D., Thomas, F. (1998) Persistent effect of temperature on Na- and K-montmorillonite suspensions. Clays Clay Miner. 46, 636–648.Google Scholar
Garcia, N.J. & Bazan, J.C. (1996) Conductivity in Na+- and Li+-montmorillonite as a function of equilibration humidity. Solid Sate Ionics, 92, 139–143.CrossRefGoogle Scholar
Gheorgiou, E. (1994) The dielectric behavior of suspensions of spherical cells. A unitary approach. J. Physics A. Math. Gen. 27, 3883–3893.Google Scholar
Heath, D. & Tadros, T.H. (1983) Influence of pH, electrolyte and poly(vinyl alcohol) addition on the rheologieal earaeteristies of aqueous dispersions of sodium montmorillonite. J. Coll. Interf. Sci. 93, 307–319.Google Scholar
Helmy, A.K., Santamaria, R.M. & Garcia, N.J. (1989) Dielectric behavior of montmorillonite quinoline complexes. Coll. Surf. A. Physicochemical and Engineering Aspects, 40, 227–233.Google Scholar
Hetzel, F., Tessier, D., Jaunet, A.M. & Doner, H. (1994) The micro structure of three Na+ smectites. The importance of particle geometry on dehydratation and rehydratation. Clays Clay Miner. 42, 3, 242–248.Google Scholar
Ishikawa, A., Hanai, T. & Koisumi, N. (1984) Dielectric study of some ion-exchange resins. Bull. Inst. Chem. Res. 62, 4.Google Scholar
Keren, R. (1988) Rheology of aqueous suspension of Na/ Ca montmorillonite. Soil Sci. Soc. Am. J. 52, 924–928.CrossRefGoogle Scholar
Lagaly, G. (1989) Principles of flow of kaolin and bentonite dispersions. Appl. Clay Sci. 4, 105–123.CrossRefGoogle Scholar
Le Méhauté, A. (1984) Les géométries fractales. L'espace-temps brisé. Traité des nouvelles technologies, Hermes, France.Google Scholar
Lockhart, N.C. (1980) Electrical properties and the surface characteristics and structure of clays. I. Swelling clays. J. Coll. Interf. Sci. 74, 509–519.Google Scholar
Loeber, L. (1992) Etude de la structure des cakes d'argiles formés sur les puits au cours du forage. PhD thesis, Univ. Orleans, France.Google Scholar
Lott, M.P., Williams, D.J.A. & Williams, P.R. (1996) The elastic properties of sodium montmorillonite suspensions. Coll. Polymer Sci. 27, 43–48.Google Scholar
Magnin, A. & Piau, J.P. (1989) Rheometrie des fluides á seuil. Validité et mesures du seuil. Pp. 85–94 in: 24 Coll. Groupe franqais des argiles. Paris, France.Google Scholar
Mamy, J. (1968) Recherches sur Vhydratation de la montmorillonite. Propriétés diélectriques et structure dufilm d'eau. PhD thesis, INRA, Paris, France.Google Scholar
Mandel, M. & van der Touw, F. (1974) Dielectric properties of polyelectrolytes in solution. Poly electrolytes, 285-300.CrossRefGoogle Scholar
Mattsson, M.S. (1996) Fractal dimension of Li insertion electrodes studied by diffusion-controlled voltammetry and impedance spectroscopy. Phys. Rev. B, 54, 2968–2971.Google Scholar
Mewis, J., De Groot, L.M. & Helsen, J.A. (1987) Dielectric behavior of flowing thixotropic suspensions. Coll. Surf. 22, 271–289.CrossRefGoogle Scholar
Morvan, M. (1993) Macrostructure des systemes smectites-eau. PhD thesis, Univ. Paris VI, France.Google Scholar
Morvan, M., Espinat, D., Lambard, J. & Zemb Th. (1994) Ultrasmall- and small-angle X-ray scattering of smectite clay suspensions. Coll. Surf. 82, 193–203.CrossRefGoogle Scholar
Norrish, K. (195) The swelling of montmorillonite. Disc. Faraday Soc. 18, 120–134.Google Scholar
O'Brien, R.W. (1986) The high-frequency dielectric dispersion of a colloid. J. Coll. Interf Sci. 113, 81–93.CrossRefGoogle Scholar
O'Konski, C.T. (1960) Electric properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. J. Chem. Phys. 64, 605–619.Google Scholar
Pierre, A.C. (1996) Structure of gels comprised of platelike particles. Case of boehmite, montmorillonite and kaolinite. J. Chem. Phys. 93, 1065–1079.Google Scholar
Pons, C.H., Rousseaux, F. & Tchoubar, D. (1981) Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l'étude du gonflement des smectites. I. Etude du systeme eau-montmorillonite- Na en fonction de la temperature. Clay Miner. 16, 23–42.CrossRefGoogle Scholar
Pons, C.H., Rousseau, F. & Tchoubar, D. (1982) Utilisation du rayonnement syncrotron en diffusion aux petits angles pour l'étude du gonflement des smectites. II. Etude de différents systèmes eausmectites en fonction de la température. Clay Miner. 17, 327–338.CrossRefGoogle Scholar
Rasmusson, M., Rowlands, W., O'Brien, R.W. & Hunter, R.J. (1997) The dynamic mobility and dielectric response of sodium bentonite. J. Coll. Interf. Sci. 189, 92–100.CrossRefGoogle Scholar
Raythatha, R. & Sen, P.N. (1986) Dielectric properties of clay suspensions in MHz to GHz range. J. Coll. Interf. Sci. 109, 301–309.CrossRefGoogle Scholar
Tessier, D. (1984) Etude expérimental de l'organisation des matériaux argileux. PhD thesis Univ. Paris VII, INRA Pub., Versailles, France.Google Scholar
Tessier, D. (1990) Organisation des matériaux argileux en relation avec leur comportement hydrique. Pp. 388–445 in: Matériaux Argileux. Structure, Propriétés et Applications (Decarreau, A. et al., editors). Societé Français Minéralogie et Cristallographie, Paris.Google Scholar
Tessier, D. (1991) Behaviour and microstructure of clay minerals. Pp. 387–415 in: Soil Colloids and their Association in Aggregates (De Boodt, M., Hayes, M. & Herbillon, A., editors). Plenum, New York.Google Scholar
Tessier, D. & Quirk, J.P. (1979) Sur Papport de la microscopie électronique dans la connaissance du gonflement des minéraux argileux. C. R. Acad. Sci. Paris, Série D, 288, 1375–1378.Google Scholar
Thiébaut, J.M., Chlihi, K., Bessière, J. & Roussy, R. (1989) Dielectric study of activation of blende with cupric ions modelisation. J. Electroanal. Chem. 3262, 131–144.Google Scholar
Touret, O. (1988) Structure des argiles hydratées. Thermodynamique de la deshydratation et de la compaction des smectites. Doc. thesis, Univ. ULP, Strasbourg, France.Google Scholar
Touret, O., Pons, C.H., Tessier, D. & Tardy, Y. (1990) Etude de la repartition de Peau dans des argiles saturees Mg2+ aux fortes teneurs en eau. Clay Miner. 25, 217–233.CrossRefGoogle Scholar
Van Damme, H. (1992) Stacking, deformation and rupture in smectite clays. Pp. 45–88 in: Conferencias Sociedad Espagnola de Arcillas, XI Reunion Cientifica, Univ. Sevilla, Spain.Google Scholar
Van Damme, H. (1995) Scale invariance and hydric behaviour of soils and clays. CR. Acad. Sci. Paris, serie lla, 320, 665–681.Google Scholar
Van Damme, H., Levitz, P., Fripiat, J.J., Alcover, J.F., Gatineau, L. & Bergaya, F. (1985) Clay minerals: a molecular approach to their fractal microstructure, Pp. 24–30 in: Physics and Finely Divided Matter (Boccara, N. & Daoud, M., editors). Berlin.Google Scholar
van Olphen, H. (1956) Forces between suspended bentonite particles, Part I- Sodium bentonite. Clays Clay Miner. 4, 204–244.Google Scholar
van Olphen, H. (1959) Forces between suspended bentonite particles, Part II- Calcium bentonite. Clays Clay Miner. 6, 196–206.Google Scholar
van Olphen, H. (1977) An Introduction to Clay Colloid Chemistry. Wiley (Interscience), London.Google Scholar
Zhao, K., Asaka, K., Asami, K. & Hanai, T. (1989) Theory and observation of dielectric relaxations due to the interfacial polarisation for interlamellar structure. Bull. Inst. Chem. Res. 67, 4.Google Scholar
Zhao, K., Asaka, K., Sekine, K. & Hanai, T. (1988) Dielectric relaxations due to the interfacial polarization in bilamellar structure. Bull. Inst. Chem. Res. 66, 5.Google Scholar
Zou, J. & Pierre, A.C. (1992) Scanning electron microscopy observations of “card-house” structures in montmorillonite gels. J. Mater. Sci Lett. 11, 664–665.CrossRefGoogle Scholar