Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-dr4jh Total loading time: 0.231 Render date: 2021-06-21T05:45:08.786Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Variations in the chemistry of smectites from the Calatayud Basin (NE Spain)

Published online by Cambridge University Press:  09 July 2018

M. J. Mayayo
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
B. Bauluz
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
J. M. Gonzalez Lopez
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Corresponding
E-mail address:

Abstract

Smectites of sedimentary series from a playa lake system from Calatayud Basin have been studied by XRD and TEM chemical microanalyses. Clay particle microanalyses show complete continuity between dioctahedral aluminous and trioctahedral magnesian smectites. Aluminous smectites have been classified as montmorillonites and ferribeidellites, both with compositional variability. They represent detrital phases resulting from weathering in the source area. Compositionally-intermediate smectites (beidellite-saponite and montmorillonite-stevensite) seem to correspond to weighted mean compositions of di- and trioctahedral phases stacked together in the same particle. They represent intermediate transitional stages from detrital to authigenic smectites in more distal basin facies. Trioctahedral smectites, although called saponites and stevensites, are actually random mixed-layer kerolite-Mg-smectite with a high percentage of expandable layers. They represent authigenic clays formed from solutions with high pH and Mg content as a result of evaporative concentration. The variability in composition of smectites, both within the same sample and amongst different samples, is a possible consequence of the heterogeneity in the local chemical environment, and so, equilibrium may be only reached locally in a large variety of microsystems.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.Google Scholar
Caillère, S. & Hénin, S. (1962) Vues d'ensemble sur le probleme de la synthese des mineraux argileus a basse temperature. Collogue N° 105 du CNRS, 32-41.Google Scholar
Christidis, G. & Dunham, A.C. (1997) Compositional variations in smectites. Part II: alteration of acidic precursor, a case study from Milos island, Greece. Clay Miner. 32, 253–270.CrossRefGoogle Scholar
Duplay, J. (1984) Analyses chimiques ponctuelles de particules d'argilles. Relation entre variations de compositions dans une population de particules et température de formation. Sci. Géol. Bull. 37, 307–317.Google Scholar
Eberl, D.D., Jones, B.F. & Khoury, H.N. (1982) Mixed layer kerolite/stevensite from the Amargosa Desert, Nevada. Clays Clay Miner. 30, 321–326.CrossRefGoogle Scholar
Foster, M. (1960) Interpretation of the composition of trioctahedral micas. U.S. Geol Surv. Prof. Pap. 354- B, 11-50.Google Scholar
Galan, E. & Castillo, A. (1984) Sepiolite-Palygorskite in Spanish Tertiary basins: Genetical patterns in continental environments. Pp 87–124. in: Palygorskitesepiolite: Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors.) Devel. Sedimentol. 37. Elsevier, Amsterdam.Google Scholar
Galan, E. & Ferrero, A. (1982) Palygorskite-sepiolite clays of Lebrija, southern Spain. Clays Clay Miner. 30, 191–199.CrossRefGoogle Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronet, A. (1993) The beidellite-saponite series: an experimental approach. Eur. J. Miner. 5, 623–635.CrossRefGoogle Scholar
Güven, N. (1988) Smectites. Pp. 497-559. in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington DC, USA.Google Scholar
Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays Clay Miner. 26, 65–72.CrossRefGoogle Scholar
Jones, B.F. (1986) Clay mineral diagenesis in lacustrine sediments. U.S. Geol. Surv. Bull. 1578, 291–300.Google Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and Palygorskite. Pp.631–674. in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington DC, USA.Google Scholar
Jones, B.F. & Weir, A.H. (1983) Clay minerals of Lake Abert, an alkaline, saline lake. Clays Clay Miner. 31, 161–172.CrossRefGoogle Scholar
Khoury, H.N., Eberl, D.D. & Jones, B.F. (1982) Origin of magnesium clays from the Amargosa Desert, Nevada. Clays Clay Miner. 30, 327–336.CrossRefGoogle Scholar
Kodama, H., De Kimpe, C.R. & Dejou, J. (1988) Ferrian saponite in a gabbro saprolite at Mount Megantic, Quebec. Clays Clay Miner. 36, 102–110.CrossRefGoogle Scholar
Leguey, S., Pozo, M. & Medina, J.A. (1989) Paleosuelos de sepiolita en el neogeno de la cuenca de Madrid. Estudios Geol. 45, 279–291.CrossRefGoogle Scholar
Lim, C.H. & Jackson, M.X. (1986) Expandable phyllosilicate reactions with lithium on heating. Clays Clay Miner. 34, 346–352.CrossRefGoogle Scholar
Lorimer, G.W. & Cliff, G. (1976) Analytical electron microscopy of minerals. Pp. 506–519. in: Electron Microscopy in Mineralogy (Wenk, H.R., editor). Springer, Berlin.Google Scholar
Martín de Vidales, J.L., Pozo, M., Alia, J.M., Garcia-Navarro, F. & Rull, F. (1991) Kerolite/stevensite mixed layers from the Madrid Basin, Central Spain. Clay Miner. 26, 329–342.CrossRefGoogle Scholar
Mayayo, M.J., Bauluz, B., López-Galindo, A. & González-López, J.M. (1996) Mineralogy and geochemistry of the carbonates in the Calatayud Basin (Zaragoza, Spain). Chem. Geol. 130, 123–136.CrossRefGoogle Scholar
Mayayo, M.J., Torres-Ruiz, J., González-López, J.M., López-Galindo, A. & Bauluz, B. (1998) Mineralogical and chemical characterization of the sepiolite/Mg-smectite deposit at Mara (Calatayud basin, Spain). Eur. J. Miner., 10, 367–383.CrossRefGoogle Scholar
Millot, G. (1964) Géologie des Argiles. Masson et Cie, Paris.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1–128 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.Google Scholar
Ortí, F. (1992) Diagénesis en las evaporitas continentales del Terciario peninsular iberico. III Congreso Geológico de España y VIII Congreso Latinoamericano de Geología, Salamanca. Simposios, 1, pp. 118–127.Google Scholar
Paquet, H. (1970) Evolution geochimique des mineraux argileux dans les alterations et les sols des climats mediterranees tropicaux a saisons contrastes. Bull. Serv. Carte Geol. Als. Lorraine, 30, 1–212.Google Scholar
Paquet, H., Duplay, J. & Nahon, D. (1982) Variations in the composition of phyllosilicate monoparticles in a weathering profile developed on ultrabasic rocks. Proc. Int. Clay Conf., Bologna-Pavia, 595-603.Google Scholar
Paquet, H., Duplay, J. & Valleron-Blanc, M.M. (1987) Octahedral composition of individual particles in smectite-palygorskite and smectite-sepiolite assemblages. Proc. Int. Clay Conf., Denver, 13,-11. Google Scholar
Pozo, M., Casas, J. & Martin de Vidales, J.L. (1998) Identification of paleosoils occurrences in paludine Mg-clay deposits: genetic constraints and evolution of authigenic clays (Neogene Madrid Basin, Spain). Proc. 2nd Mediterranean Clay Meeting. Aveiro. Vol. 2, 145–149.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249-303 in: Crystal Structures of Clay Minerals and their X-ray Identification. (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Reynolds, R.C. (1996) NEWMOD® for Windows. The calculation of one-dimensional X-ray diffraction patterns of mixed-layered clay minerals. Reynolds, D.C. Jr., 8 Broiok Road, Hanover, New Hampshire, USA.Google Scholar
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylation temperature and structural water content of aluminous smectites. Clays Clay Miner. 17, 115–149.CrossRefGoogle Scholar
Tardy, Y., Duplay, J. & Fritz, B. (1987) Stability fields of smectites and illites as a function of temperature and chemical composition. Pp. 461–494 in: Geochemistry and Mineral Formation in the Earth Surface (Rodriguez-Clemente, R. & Tardy, Y., editors). CSIC-CNRS, Madrid.Google Scholar
Trauth, N. (1977) Argiles evaporitiques dans la sedimentation carbonatee continentale et epicontinentale Tertiaire. Sci. Geol. Mem. 49, 1–195.Google Scholar
Trauth, N., Paquet, H., Lucas, J. & Millot, G. (1967) Les montmorillonites des vertisols lithomorphes sont ferriferes: consequences geochimiques et sedimentologiques. C. R. Acad. Sci. Paris, 264, 1577–1579.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Devel. Sedimentol. 15, Elsevier, Amsterdam.Google Scholar
10
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Variations in the chemistry of smectites from the Calatayud Basin (NE Spain)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Variations in the chemistry of smectites from the Calatayud Basin (NE Spain)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Variations in the chemistry of smectites from the Calatayud Basin (NE Spain)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *