Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-x64cq Total loading time: 0.641 Render date: 2022-05-17T14:12:30.584Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Structural, mechanical and Raman spectroscopic characterization of the layered uranyl silicate mineral, uranophane-α, by density functional theory methods

Published online by Cambridge University Press:  10 August 2018

Francisco Colmenero*
Affiliation:
Instituto de Estructura de la Materia, CSIC, C/Serrano, 113, 28006 Madrid, Spain
Vicente Timón
Affiliation:
Instituto de Estructura de la Materia, CSIC, C/Serrano, 113, 28006 Madrid, Spain
Laura J. Bonales
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, Avda/Complutense, 40, 28040 Madrid, Spain
Joaquín Cobos
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, Avda/Complutense, 40, 28040 Madrid, Spain

Abstract

The layered uranyl silicate clay-like mineral, uranophane-α, Ca(UO2)2(SiO3OH)2·5H2O, was studied by first-principles calculations based on the density functional theory method. The structure, observed in nature in a wide variety of compounds having the uranophane sheet anion topology, is confirmed here for the first time by means of rigorous theoretical solid-state calculations. The computed lattice parameters, bond lengths and bond angles were in very good agreement with the experimental ones, and the calculated X-ray powder trace accurately reproduced its experimental counterpart. The mechanical properties of uranophane-α, for which there are no experimental data for terms of comparison, were determined, and the satisfaction of the mechanical stability Born conditions of the structure was demonstrated by calculations of the elasticity tensor. The Raman spectrum was computed by the density functional perturbation theory and compared with the experimental spectrum. The vibrational properties of this mineral were well characterized, showing a good performance in all of the studied spectral range. Theoretical methods allowed assignment of the Raman bands to vibrations localized in different fragments within the crystal unit cell. Finally, the possibility of incorporation of strontium inside the uranophane structure was studied. The computed structure, X-ray powder trace and Raman spectrum of Sr-exchanged uranophane were very close to those of the ordinary Ca-uranophane.

Type
Article
Information
Clay Minerals , Volume 53 , Issue 3 , September 2018 , pp. 377 - 392
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the session OM-05: ‘Computational modeling of clay minerals and related materials' during the International Clay Conference 2017.

Guest Associate Editor: A. Kalinichev

References

Amme, M., Renker, B., Schmid, B., Feth, M.P., Bertagnolli, H. & Döbelin, W. (2002) Raman microspectrometric identification of corrosion products formed on UO2 nuclear fuel during leaching experiments. Journal of Nuclear Materials, 306, 202212.CrossRefGoogle Scholar
Angel, R.J. (2001) Equations of state. Pp. 3560 in: High-Temperature and High-Pressure Crystal Chemistry (Hazen, R.M. & Downs, R.T., editors). Reviews in Mineralogy and Geochemistry, 41. Mineralogical Society of America, Chantilly, VA, USA.Google Scholar
Atencio, D., Carvalho, F.M.S. & Matioli, P.A. (2004) Coutinhoite, a new thorium uranyl silicate hydrate, from Urucum mine, Galiléia, Minas Gerais, Brazil. American Mineralogist, 89, 721724.CrossRefGoogle Scholar
Berghout, A., Tunega, D. & Zaoui, A. (2010) Density functional theory (DFT) study of the hydration steps of Na+/Mg2+/Ca2+/Sr2+/Ba2+-exchanged montmorillonites. Clays and Clay Minerals, 58, 174187.CrossRefGoogle Scholar
Birch, F. (1947) Finite elastic strain of cubic crystal. Physical Review, 71, 809824.CrossRefGoogle Scholar
Bonales, L.J., Colmenero, F., Cobos, J. & Timón, V. (2016) Spectroscopic Raman characterization of rutherfordine: a combined DFT and experimental study. Physical Chemistry Chemical Physics, 18, 65756584.CrossRefGoogle ScholarPubMed
Bonales, L.J., Menor-Salván, C. & Cobos, J. (2015) Study of the alteration products of a natural uraninite by Raman spectroscopy. Journal of Nuclear Materials, 462, 296303.CrossRefGoogle Scholar
Bouhadda, Y., Djella, S., Bououdina, M., Fenineche, N. & Boudouma, Y. (2012) Structural and elastic properties of LiBH4 for hydrogen storage applications. Journal of Alloys and Compounds, 534, 2024.CrossRefGoogle Scholar
Burns, P.C. (1998) The structure of boltwoodite and implications of solid solution toward sodium boltwoodite. The Canadian Mineralogist, 36, 10691075.Google Scholar
Burns, P.C. (1999a) The crystal chemistry of uranium. Pp. 2390 in: Uranium: Mineralogy, Geochemistry, and the Environment (Burns, P.C. & Finch, R., editors). Reviews in Mineralogy and Geochemistry, 38. Mineralogical Society of America, Chantilly, VA, USA.CrossRefGoogle Scholar
Burns, P.C. (1999b) Cs boltwoodite obtained by ion exchange from single crystals: implications for radionuclide release in a nuclear repository. Journal of Nuclear Materials, 265, 218223.CrossRefGoogle Scholar
Burns., P.C. (2001) A new uranyl silicate sheet in the structure of haiweeite and comparison to other uranyl silicates. The Canadian Mineralogist, 39, 11531160.CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.CrossRefGoogle Scholar
Burns, P.C. & Hill, F.C. (2000) A new uranyl sheet in K5[(UO2)10O8(OH)9](H2O): new insight into sheet anion-topologies. The Canadian Mineralogist, 38, 163173.CrossRefGoogle Scholar
Burns, P.C. & Klingensmith, A.L. (2006) Uranium mineralogy and neptunium mobility. Elements, 2, 351356.CrossRefGoogle Scholar
Burns, P.C. & Li, Y. (2002) The structures of becquerelite and Sr-exchanged becquerelite. American Mineralogist, 87, 550557.CrossRefGoogle Scholar
Burns, P.C., Miller, M.L. & Ewing, R.C. (1996) U6+ minerals and inorganic phases: a comparison and hierarchy of crystal structures. The Canadian Mineralogist, 34, 845880.Google Scholar
Burns, P.C., Ewing, R.C. & Hawthorne, F.C. (1997a) The crystal chemistry of hexavalent uranium; polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Burns, P.C., Ewing, R.C. & Miller, M.L. (1997b) Incorporation mechanisms of actinide elements into the structures of U6+ phases formed during the oxidation of spent nuclear fuel. Journal of Nuclear Materials, 245, 19.CrossRefGoogle Scholar
Burns, P.C., Deely, K.M. & Skanthakumar, S. (2004) Neptunium incorporation into uranyl compounds that form as alteration products of spent nuclear fuel: implications for geologic repository performance. Radiochimica Acta, 92, 151159.CrossRefGoogle Scholar
Cejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry, and the Environment (Burns, P.C. & Finch, R., editors). Reviews in Mineralogy and Geochemistry, 38. Mineralogical Society of America, Chantilly, VA, USA.CrossRefGoogle Scholar
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K. & Payne, M.C. (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie, 220, 567570.Google Scholar
Colmenero, F., Bonales, L.J., Cobos, J. & Timón, V. (2017a) Thermodynamic and mechanical properties of the rutherfordine mineral based on density functional theory. Journal of Physical Chemistry C, 121, 59946001.CrossRefGoogle Scholar
Colmenero, F., Bonales, L.J., Cobos, J. & Timón, V. (2017b) Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations. Spectrochimica Acta A, 174, 245253.CrossRefGoogle Scholar
Colmenero, F., Bonales, L.J., Cobos, J. & Timón, V. (2017c) Structural, mechanical and vibrational study of uranyl silicate mineral soddyite by DFT calculations. Journal of Solid State Chemistry, 253, 249257.CrossRefGoogle Scholar
Colmenero, F., Bonales, L.J., Cobos, J. & Timón, V. (2017d) Density functional theory study of the structural, vibrational and thermodynamic properties of γ-UO3 polymorph. Journal of Physical Chemistry C, 121, 1450714516.CrossRefGoogle Scholar
Colmenero, F., Fernández, A. M., Cobos, J. & Timón, V. (2018a) Thermodynamic properties of uranyl containing materials based on density functional theory. Journal of Physical Chemistry C, 122, 52545267.CrossRefGoogle Scholar
Colmenero, F., Fernández, A. M., Cobos, J. & Timón, V. (2018b) Temperature dependent free energies of reaction of uranyl containing materials based on density functional theory. Journal of Physical Chemistry C, 122, 52685279.CrossRefGoogle Scholar
Chen, X.-Q., Niu, H., Li, D. & Li, Y. (2011) Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19, 12751281.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. & Pilati, T. (1992) The importance of accurate crystal structure determination of uranium minerals. II. Soddyite (UO2)2(SiO4)·2H2O. Acta Crystallographica C, 48, 14.CrossRefGoogle Scholar
Douglas, M., Clark, S.B., Utsunomiya, S. & Ewing, R.C. (2002) Cesium and strontium incorporation into uranophane, Ca[(UO2)(SiO3OH)]2·5H2O. Journal of Nuclear Science and Technology, 3, 504507.CrossRefGoogle Scholar
Douglas, M., Clark, S.B., Friese, J.I., Arey, B.W., Buck, E.C., Hanson, B.D., Utsunomiya, S. & Ewing, R.C. (2005) Microscale characterization of uranium(VI) silicate solids and associated neptunium(V). Radiochimica Acta, 93, 265272.CrossRefGoogle Scholar
Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. & Boisen, M.B. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 11041107.Google Scholar
Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals, Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, 2006. O03-13. Record RRUFF-050380 corresponds to a natural mineral sample from Grafton County, New Hampshire, USA. RRUFF database, URL http://rruff.info/uranophane.Google Scholar
Driscoll, R.J.P., Wolverson, D., Mitchels, J.M., Skelton, J.M., Parker, S.C., Molinari, M., Khan, I., Geeson, D. & Allen, G.C. (2014) A Raman spectroscopic study of uranyl minerals from Cornwall, UK. RSC Advances, 4, 5913759149.CrossRefGoogle Scholar
Finch, R.J. & Ewing, R.C. (1992) The corrosion of uraninite under oxidizing conditions. Journal of Nuclear Materials, 190, 133156.CrossRefGoogle Scholar
Forbes, T.Z. & Burns, P.C. (2006) Ba(NpO2)(PO4)(H2O), its relationship to the uranophane group, and implications for Np incorporation in uranyl minerals. American Mineralogist, 91, 10891093.CrossRefGoogle Scholar
Frondel, C. (1956) Mineral composition of gummite. American Mineralogist, 41, 539568.Google Scholar
Frost, R.L., Cejka, J., Weier, M.L. & Martens, W.N. (2006a) Molecular structure of the uranyl silicates – a Raman spectroscopic study. Journal of Raman Spectroscopy, 37, 538551.CrossRefGoogle Scholar
Frost, R.L., Cejka, J., Weier, M.L. & Martens, W.N. (2006b) Raman spectroscopy study of selected uranophanes. Journal of Molecular Structure, 788, 115125.CrossRefGoogle Scholar
Ginderow, D. (1988) Structure de l'uranophane alpha, Ca(UO2)2(SiO3OH)2.5H2O. Acta Crystallographica, 44, 421424.Google Scholar
Grenthe, I., Drozdzynski, J., Fujino, T., Buck, E.C., Albrecht-Schmitt, T.E. & Wolf, S.F. (2006) Uranium. Pp. 253638, in: The Chemistry of the Actinide and Transactinide Elements, Vol. I (Morss, L.R., Edelstein, N.M. & Fuger, J., editors). Springer Science and Business Media, Berlin.CrossRefGoogle Scholar
Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal Computational Chemistry, 27, 17871799.CrossRefGoogle ScholarPubMed
Hill, R. (1952) The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society of London, 65, 349354.CrossRefGoogle Scholar
Huang, J., Wang, X. & Jacobson, A.J. (2003) Hydrothermal synthesis and structures of the new open-framework uranyl silicates Rb4(UO2)2(Si8O20) (USH-2Rb), Rb2(UO2)(Si2O6)·H2O (USH-4Rb) and A2(UO2)(Si2O6)·0.5H2O (USH-5A, A = Rb,Cs). Journal of Materials Chemistry, 13, 191196.CrossRefGoogle Scholar
Jackson, J.M. & Burns, P.C. (2001) A re-evaluation of the structure of weeksite, a uranyl silicate framework mineral. The Canadian Mineralogist, 39, 187195.CrossRefGoogle Scholar
Jin, G.B., Skanthakumar, S. & Soderholm, L. (2011) Two new neptunyl(V) selenites: a novel cation–cation interaction framework in (NpO2)3(OH)(SeO3)(H2O)2·H2O and a uranophane-type sheet in Na(NpO2)(SeO3)(H2O). Inorganic Chemistry, 50, 62976303.CrossRefGoogle Scholar
Jouffret, L., Rivenet, M. & Abraham, F. (2010a) U(VI) oxygen polyhedra as pillars for building frameworks from uranophane-type layers. IOP Conference Series: Materials Science and Engineering, 9, 012028.CrossRefGoogle Scholar
Jouffret, L.Rivenet, M. & Abraham, F. (2010b) A new series of pillared uranyl-vanadates based on uranophane-type sheets in the uranium-vanadium-linear alkyl diamine systems. Journal of Solid State Chemistry, 183, 8492.CrossRefGoogle Scholar
Jouffret, L., Shao, Z., Rivenet, M. & Abraham, F. (2010c) New three-dimensional inorganic frameworks based on the uranophane-type sheet in monoamine templated uranyl-vanadates. Journal of Solid State Chemistry, 183, 22902297CrossRefGoogle Scholar
Klingensmith, A.L. & Burns, P.C. (2007) Neptunium substitution in synthetic uranophane and soddyite. American Mineralogist, 92, 19461951.CrossRefGoogle Scholar
Kuta, J., Wang, Z., Wisuri, K., Wander, M.C.F., Wall, N.A. & Clark, A.E. (2013) The surface structure of α-uranophane and its interaction with Eu(III) – an integrated computational and fluorescence spectroscopy study. Geochimica et Cosmochimica Acta, 103, 184196.CrossRefGoogle Scholar
Materials Studio (2018) BIONIA Materials Studio Package http://accelrys.com/products/collaborative-science/biovia-materials-studio/Google Scholar
Mer, A., Obbade, S., Rivenet, M., Renard, C. & Abraham, F. (2012) [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology. Journal of Solid State Chemistry, 185, 180186.CrossRefGoogle Scholar
Mouhat, F. & Coudert, F.-X. (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90, 224104.CrossRefGoogle Scholar
Murphy, W.M. & Grambow, B. (2008) Thermodynamic interpretation of neptunium coprecipitation in uranophane for application to the Yucca Mountain Repository. Radiochimica Acta, 96, 563567.CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. J. Wiley and Sons, New York.Google Scholar
Niu, H., Wei, P., Sun, Y., Chen, X.-Q., Franchini, C., Li, D. & Li, Y. (2011) Electronic, optical, and mechanical properties of superhard cold-compressed phases of carbon. Applied Physics Letters, 99, 031901.CrossRefGoogle Scholar
Novacek, R. (1935) Study of some secondary uranium minerals. Věstník Královské České Společnosti Nauk II, 7, 36.Google Scholar
Nye, J.F. (1985) The Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, New York.Google Scholar
Pearcy, E.C., Prikryl, J.D., Murphy, W.M. & Leslie, B. W. (1994) Alteration of uraninite from the Nopal I deposit, Peña Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed U.S. high-level nuclear waste repository at Yucca Mountain, Nevada. Applied Geochemistry, 9, 713732.CrossRefGoogle Scholar
Perdew, J.P., Burke, K. & Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 38653868.CrossRefGoogle ScholarPubMed
Plasil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge. Journal of Geosciences, 59, 99114.CrossRefGoogle Scholar
Pugh, S.F. (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 45, 823843.Google Scholar
Ranganathan, S.L. & Ostoja-Starzewski, M. (2008) Universal elastic anisotropy index. Physical Review Letters, 101, 055504.CrossRefGoogle ScholarPubMed
Ravindran, P., Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J. & Eriksson, O. (1998) Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. Journal of Applied Physics, 84, 48914904.CrossRefGoogle Scholar
Reuss, A. (1929) Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 4958.CrossRefGoogle Scholar
Shuller, L.C., Ewing, R.C. & Becker, U. (2010) Quantum-mechanical evaluation of Np-incorporation into studtite. American Mineralogist, 95, 11511160.CrossRefGoogle Scholar
Shuller, L.C., Ewing, R.C. & Becker, U. (2013) Np-incorporation into uranyl phases: a quantum-mechanical evaluation. Journal of Nuclear Materials, 434, 440450.CrossRefGoogle Scholar
Shuller, L.C., Bender, W.M., Walker, S.M. & Becker, U. (2014) Quantum-mechanical methods for quantifying incorporation of contaminants in proximal minerals. Minerals, 4, 690715.CrossRefGoogle Scholar
Stohl, F.V. & Smith, D.K. (1981) The crystal chemistry of the uranyl silicate minerals. American Mineralogist, 66, 610624.Google Scholar
Troullier, N. & Martins, J.L. (1991) Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43, 19932006.CrossRefGoogle ScholarPubMed
Tunega, D., Bucko, T. & Zaoui, A. (2012) Assessment of ten DFT methods in predicting structures of sheet silicates: importance of dispersion corrections. Journal of Chemical Physics, 137, 114105.CrossRefGoogle ScholarPubMed
Viswanathan, K. & Harneit, O. (1986) Refined crystal structure of beta-uranophane, Ca(UO2)2(SiO3OH)2·5H2O. American Mineralogist, 71, 14891493.Google Scholar
Voigt, W. (1928) Lehrbuch der Kristallphysik. Teubner, Leipzig, Germany.Google Scholar
Wall, N.A., Clark, S.B. & McHale, J.L. (2010) Synthesis and characterization of 1:1 layered uranyl silicate mineral phases. Chemical Geology, 274, 149157.CrossRefGoogle Scholar
Weck, P.F., Kim, E. & Buck, E.C. (2015) On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation. RSC Advances, 5, 7909079097.CrossRefGoogle Scholar
Wheaton, V., Majumdar, D., Balasubramanian, K., Chauffe, L. & Allen, P.G. (2003) A comparative theoretical study of uranyl silicate complexes. Chemical Physics Letters, 371, 349359.CrossRefGoogle Scholar
Websky, M. (1853) Über die geognostichen Verhaltnisse der Erzlagerstäten von Kupferberg u. Rudelstadt in Schlesien. Zs. d. Deutsche Geologische Gesellschaft, V, 391.Google Scholar
Websky, M. (1859) Ueber Uranophan. Zs. d. Deutsche Geologische Gesellschaft, XI, 384.Google Scholar
Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E. & Tani, B.S. (1992) Uranium release and secondary phase formation during unsaturated testing of UO2 at 90°C. Journal of Nuclear Materials, 190, 107127.CrossRefGoogle Scholar
Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E. & Tani, B.S. (1996) Ten-year results from unsaturated drip tests with UO2 at 90°C: implications for the corrosion of spent nuclear fuel. Journal of Nuclear Materials, 238, 7895.CrossRefGoogle Scholar
Supplementary material: File

Colmenero et al. supplementary material

Colmenero et al. supplementary material 1

Download Colmenero et al. supplementary material(File)
File 2 MB
16
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Structural, mechanical and Raman spectroscopic characterization of the layered uranyl silicate mineral, uranophane-α, by density functional theory methods
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Structural, mechanical and Raman spectroscopic characterization of the layered uranyl silicate mineral, uranophane-α, by density functional theory methods
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Structural, mechanical and Raman spectroscopic characterization of the layered uranyl silicate mineral, uranophane-α, by density functional theory methods
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *