Hostname: page-component-cc8bf7c57-n7qbj Total loading time: 0 Render date: 2024-12-11T06:17:05.709Z Has data issue: false hasContentIssue false

Mineralogical and physico-chemical characteristics of Cameroonian smectitic clays after treatment with weakly sulfuric acid

Published online by Cambridge University Press:  02 January 2018

J.R. Mache*
Affiliation:
Mission de Promotion des Matériaux Locaux, B.P. 2396 Yaoundé, Cameroon Laboratoire de Chimie Inorganique Appliquée, Departement de Chimie Inorganique, Université de Yaoundé 1, B.P. 812 Yaoundé, Cameroun UR AGEs Argiles, Géochimie et Environnements sédimentaires, Département de Géologie, Université de Liège, B18, Allée du 6 Août, B-4000 Liège, Belgium
P. Signing
Affiliation:
Laboratoire de Chimie Inorganique Appliquée, Departement de Chimie Inorganique, Université de Yaoundé 1, B.P. 812 Yaoundé, Cameroun
J.A. Mbey
Affiliation:
Laboratoire de Chimie Inorganique Appliquée, Departement de Chimie Inorganique, Université de Yaoundé 1, B.P. 812 Yaoundé, Cameroun Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 CNRS-Université de Lorraine, 15 Avenue du Charmois, B.P. 40. F-54501, Vandœuvre-lès-Nancy Cedex, France
A. Razafitianamaharavo
Affiliation:
Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 CNRS-Université de Lorraine, 15 Avenue du Charmois, B.P. 40. F-54501, Vandœuvre-lès-Nancy Cedex, France
D. Njopwouo
Affiliation:
Laboratoire de Chimie Inorganique Appliquée, Departement de Chimie Inorganique, Université de Yaoundé 1, B.P. 812 Yaoundé, Cameroun
N. Fagel
Affiliation:
UR AGEs Argiles, Géochimie et Environnements sédimentaires, Département de Géologie, Université de Liège, B18, Allée du 6 Août, B-4000 Liège, Belgium
*

Abstract

Smectitic clays from the Sabga and Bana areas, western Cameroon were treated with sulfuric-acid solutions of various concentrations – 0.5, 0.7, 1.0 and 4.0 N – at 80°C for 2 h. The mineralogical, physicochemical and morphological characteristics of the samples treated were analysed using several techniques. The sulfuric acid caused structural modification of the dioctahedral smectite. The accessory minerals such as cristobalite, quartz, feldspars and anatase remained unaltered by the acid attack. The supernatant solutions after acid treatment contain Mg, Ca, K, Na, Si, Al and Fe as a result of partial dissolution of octahedral and tetrahedral cations. The activated clay samples exhibited a smaller cation exchange capacity (CEC) and the specific surface area (SSA) increased with increasing concentration of sulfuric acid, ranging from 65 to 134 m2/g for the sample from Bana and from 74 to 84 m2/g for the sample from Sabga. The different SSAvalues were affected by the relative abundance of smectite and cristobalite (SiO2/Al2O3 = 2.2 and 6.5, respectively, from Bana and Sabga). The activated clays from Bana and Sabga displayed interesting physicochemical and textural properties and can be considered as promising adsorbents for the bleaching of vegetable oils.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M. (1987) Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmor-illonite catalysts — a review. Applied Clay Science, 2, 309342.Google Scholar
Amari, A., Chlendi, M., Gannouni, A. & Bellagi, A. (2010) Optimised activation of bentonite for toluene adsorption. Applied Clay Science, 47, 457461.Google Scholar
Anderson, A.J.C. & Williams, P.N. (1962) Refining of Oils and Fats for Edible Purposes. Pergamon, New York. Google Scholar
Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distributions in porous substances. I. Computation from nitrogen isotherms. Journal of the American Chemical Society, 73, 373380.Google Scholar
Bergaya, F., Theng, B.K.G. & Lagaly, G. (2006) Handbook of Clay Science. Developments in Clay Science, 1, Elsevier, Amsterdam.Google Scholar
Breen, C. (1991) Thermogravimetric study of the desorp-tion of cyclohexylamine and pyridine from an acid-treated Wyoming bentonite. Clay Minerals, 26, 473486.CrossRefGoogle Scholar
Breen, C., Madejová, J. & Komadel, P. (1995) Characterization of moderately acid-treated, size fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis. Journal of Materials Chemistry, 5, 469474.CrossRefGoogle Scholar
Brunauer, S., Deming, L.S., Deming, D.M. & Teller, E. (1940) On a theory of the van der Waals adsorption on gases. Journal of the American Chemical Society, 62, 17231732.Google Scholar
Christidis, G.E., Scott, P.W. & Dunham, A.C. (1997) Acid activation and bleaching capacity of bentonites from the Island of Milos and Chios, Aegean, Greece. Applied Clay Science, 12, 329347.Google Scholar
De Boer, J.H., Lippens, B.C., Linsen, B.G., Brokhoff, J.C.P., Van DerHeuvel, A. & Osinga, T.J. (1966) The t-cuve of multimolecular N2 adsorption. Journal of Colloid and Interface Science, 21, 405414.Google Scholar
Fahn, R. & Fenderl, K. (1983) Reaction products of organic dye molecules with acid-treated montmorillonites. Clay Minerals, 18, 447458.Google Scholar
Falaras, P., Kovanis, I., Lezou, F. & Seiragakis, G. (1999) Cotton oil bleaching by acid-activated montmorillon-ite. Clay Minerals, 34, 221232.Google Scholar
Gates, W.E., Anderson, J.S., Raven, M.D. & Churchman, G.J. (2002) Mineralogy of a bentonite from Miles, Queensland, Australia and characterization of its acid activation products. Applied Clay Science, 20, 189197.CrossRefGoogle Scholar
Hussin, F., Aroua, M.K. & Wan Daud, W.M.A. (2011) Textural characteristic, surface chemistry and activation of bleaching earth: A review. Chemical Engineering Journal, 170, 90—106.Google Scholar
Ikhtiyarova, G.A., Özcan, A.S., GökÖ, . & Özcan, A. (2012) Characterization of natural- and organo-bentonite by XRD, SEM, FT-IR and thermal analysis techniques and its adsorption behavior in aqueous solutions. Clay Minerals, 47, 3144.Google Scholar
Karakaya, M.Ç., Karakaya, N. & Kiipeli, Ş. (2011) Mineralogical and geochemical properties of the Na-and Ca-bentonite of Ordu (NE Turkey). Clays and Clay Minerals, 59, 7594.Google Scholar
Komadel, P., Janek, M., Madejová, J., Weekes, A. & Breen, C. (1997) Acidity and catalyitic activity of mildly acid-treated Mg-rich montmorillonite and hectorite. Journal of the Chemical Society, Faraday Transactions, 93, 42074210.Google Scholar
Korichi, S., Elias, A. & Mefti, A. (2009) Characterization of smectite after acid activation with microwave irradiation. Applied Clay Science, 42, 432—438.Google Scholar
Mache, J.R. (2013) Minéralogie et propriétés physico-chimiques des smectites de Bana et Sabga (Cameroun): utilisation dans la décoloration d'une huile végétale alimentaire. These de Doctorat en Sciences de l'Université de Liege, Belgium, 145 pp.Google Scholar
Mache, J.R., Signing, P., Njoya, A., Kunyukubundo, F., Mbey, J.A., Njopwouo, D. & Fagel, N. (2013) Smectite clay from the Sabga deposit (Cameroon): mineralogical and physicochemical properties. Clay Minerals, 48, 499512.Google Scholar
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibration Spectroscopy, 31, 110.Google Scholar
Madejova, J., Komdel, P. & Čičel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319326.Google Scholar
Mahmoud, S. & Saleh, S. (1999) Effect of acid activation on the de-tert-butylation activity of some Jordanian clays. Clays and Clay Minerals, 47, 481486.Google Scholar
Morgan, D.A., Shaw, D.B., Sidebottom, M.J., Soon, T.C. & Taylor, R.S. (1985) The function of bleaching earths in the processing of palm, palm kernel and coconut oils. Journal of the American Oil Chemists’ Society, 62, 292299.Google Scholar
Murray, H.H. (1999) Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 399.Google Scholar
Nguetnkam, J.P., Kamga, R., Villiéras, F., Ekodeck, G.E., Razafitianamaharavo, A. & Yvon, J. (2011) Alteration of Cameroonian clays under acid treatment. Comparison with industrial adsorbents. Applied Clay Science, 52, 122132.Google Scholar
Önal, M. & Sarikaya, Y. (2007) Preparation and characterization of acid-activated bentonite powders. Powder Technology, 172, 1418.Google Scholar
Rhodes, C.N. & Brown, D.R. (1992) Structural characterisation and optimisation of acid-treated montmoril-lonite and high porosity silica supports for ZnCl2 alkylation catalysts. Journal of the Chemical Society, Faraday Transactions, 88, 22692274.Google Scholar
Rhodes, C.N. & Brown, D.R. (1993) Surface properties and porosities of silica and acid-treated montmorillonite catalyst supports: influence on activities of supported ZnCl2 catalysts. Journal of the Chemical Society, Faraday Transactions, 89, 13871391.Google Scholar
Rhodes, C.N. & Brown, D.R. (1994) Catalytic activity of acid-treated montmorillonite in polar and non-polar reaction media. Catalysis Letters, 24, 285—291.CrossRefGoogle Scholar
Rhodes, C.N., Franks, M., Parkes, G.M.B. & Brown, D.R. (1991) The effect of acid treatment on the activity of clay supports for ZnCl2 alkylation catalysts. Journal of the Chemical Society, Chemical Communications, 804-807.Google Scholar
Srasra, E., Bergaya, F., Van Damme, H. & Ariguib, N.K. (1989) Surface properties of activated bentonite: decolorization of rape seed oil. Applied Clay Science, 4, 411421.Google Scholar
Siddiqui, M.K.H. (1968) Bleaching Earths. Pergamon, Oxford, UK, 86 pp.Google Scholar
Steudel, A., Batenburg, L.F., Fischer, H.R., Weidler, P.G. & Emmerich, K. (2009) Alteration of swelling clay minerals by acid activation. Applied Clay Science, 44, 105115.Google Scholar
Temuujin, J., Jadambaa, Ts., Burmaa, G., Erdenechimeg, Sh., Amarsanaa, J. & MacKenzie, K.J.D. (2004) Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceramics International, 30, 251255.Google Scholar
Van Olphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Materials and Other Non-Metallic Minerals. Pergamon Press, Oxford, UK.Google Scholar