Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-s5lbf Total loading time: 0.272 Render date: 2022-06-27T19:00:40.564Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Chemical composition and Gibbs standard free energy of formation of Fe(II)-Fe(III) hydroxysulphate green rust and Fe(II) hydroxide

Published online by Cambridge University Press:  09 July 2018

Ph. Refait
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement, UMR 7564 CNRS-Université H. Poincaré, Équipe sur la Réactivité des Espèces du Fer and Département de Science des Matériaux, ESSTIN, 405, rue de Vandoeuvre, F 54600 Villers-les-Nancy
C. Bon
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement, UMR 7564 CNRS-Université H. Poincaré, Équipe sur la Réactivité des Espèces du Fer and Département de Science des Matériaux, ESSTIN, 405, rue de Vandoeuvre, F 54600 Villers-les-Nancy
L. Simon
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement, UMR 7564 CNRS-Université H. Poincaré, Équipe sur la Réactivité des Espèces du Fer and Département de Science des Matériaux, ESSTIN, 405, rue de Vandoeuvre, F 54600 Villers-les-Nancy
G. Bourrié
Affiliation:
INRA-UR de Science du Sol et de Bioclimatologie, 65 rue de Saint Brieuc, F 35042 Rennes Cedex UPR 4661 CNRS-Univ. Rennes 1, Géosciences Rennes, Campus de Beaulieu, F 35042 Rennes Cedex, France
F. Trolard
Affiliation:
INRA-UR de Science du Sol et de Bioclimatologie, 65 rue de Saint Brieuc, F 35042 Rennes Cedex
J. Bessière
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement, UMR 7564 CNRS-Université H. Poincaré, Équipe sur la Réactivité des Espèces du Fer and Département de Science des Matériaux, ESSTIN, 405, rue de Vandoeuvre, F 54600 Villers-les-Nancy
J.-M. R. Gènin*
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement, UMR 7564 CNRS-Université H. Poincaré, Équipe sur la Réactivité des Espèces du Fer and Département de Science des Matériaux, ESSTIN, 405, rue de Vandoeuvre, F 54600 Villers-les-Nancy
*
Corresponding author

Abstract

The redox potential and pH of aerated suspensions of iron(II) hydroxide in sulphate–containing aqueous solutions are measured during the oxidation process. Plateaux corresponding to the equilibrium conditions between Fe(OH)2(s) and Fe(II)-Fe(III) hydroxysulphate GR2(SO2-4)(s) on the one hand, and between GR2(SO2-4)(s) and FeOOH(s) on the other hand, are displayed. Potentiometry, voltammetry, pH-metry and Mössbauer spectroscopy are applied to follow all reactions. The thermodynamic meaning of the measured potential of the first plateau which corresponds to the GR2(SO2-4)(s)/Fe(OH)2(s) equilibrium is demonstrated. The chemical composition of GR2(SO2-4)(s) is found to be FeII4 FeIII2(OH)12SO4·nH2O all along the oxidation process, implying that this compound must be considered as a pure phase with a well-defined composition. The Gibbs standard free energy of formation or chemical potential μ°[GR2(SO2-4)(s)] in ‘anhydrous form’ (n = 0) is determined at −3790±10 kJ mol-1. A consistent value of μ°[Fe(OH)2(s)] at −490±1 kJ mol-1 is obtained.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R. (1970) Doppelschichtstrukturen mit brucithânlichen Schichtionen [Me(II)1-xMe(III)x(OH)2]x+ . Chimia. 24, 99108. Bard, A.J., Parsons, R. & Jordan, J. (1985) Standard Potentials in Aqueous Solution. Marcel Dekker Inc., New York.Google Scholar
Bender Koch, C. & Morup, S. (1991) Identification of green rust in an ochre sludge. Clay Miner. 26, 577582.CrossRefGoogle Scholar
Centre for Exposure Assessment and Modelling (CEAM) (1991) MINTEQ A2. USEPA Office of Research and Development, College Station Rd., Athens, GA, USA.Google Scholar
Chariot, G. (1959) Les Réactions Électrochimiques. Masson, Paris.Google Scholar
Cuttler, A.H., Man, V., Cranshaw, T.E. & Longworth, G. (1990) A Mössbauer study of green rust precipitates: I. Preparations from sulphate solutions. Clay Miner. 25, 289301.CrossRefGoogle Scholar
Detournay, J., De Miranda, L., Dérie, R. & Ghodsi, M. (1975) The region of stability of GRII in the electrochemical potential-pH diagram of iron in sulphate medium. Corros. Sci. 15, 295306.CrossRefGoogle Scholar
Dézsi, I., Keszthelyi, L., Kulgawczuk, D., Molnar & Eissa, N.A. (1967) Mössbauer study of β- and α-FeOOH and their disintegration products. Phys. Stat. Sol. 11. 617-629.Google Scholar
Drissi, S.H., Refait, Ph., Abdelmoula, M. & Génin, J.-M.R. (1995) Preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxide-carbonate (green rust one), Pourbaix diagram of iron in carbonate-containing aqueous media. Corros. Sci. 37, 20252041.CrossRefGoogle Scholar
Forsyth, J.B., Hedley, I.G. & Johnson, C.E. (1968) The magnetic structure and hyperfme field of goethite (α-FeOOH). J. Phys. C. 1, 179188.CrossRefGoogle Scholar
Fox, L.E. (1988) The solubility of colloidal ferric hydroxide and its relevance to iron concentrations in river water. Geochim. Cosmochim. Acta. 52, 771777.CrossRefGoogle Scholar
Génin, J.-M.R., Bauer Ph., Olowe, A.A. & Rézel, D. (1986) Mössbauer study of the kinetics of simulated corrosion process of iron in chlorinated aqueous solution around room temperature: the hyperfme structure of ferrous hydroxides and green rust 1. Hyperf. Inter. 29, 13551358.CrossRefGoogle Scholar
Génin, J.-M.R., Olowe, A.A., Benbouzid-Rollet, N.D., Prieur, D., Confente, M. & Résiak, B. (1991) The simultaneous presence of green rust 2 and sulphate reducing bacteria in the corrosion of steel sheet piles in a harbour area. Hyperf. Inter. 69, 875878.CrossRefGoogle Scholar
Génin, J.-M.R., Olowe, A.A., Refait, Ph. & Simon, L. (1996) On the stoichiometry and Pourbaix diagram of Fe(II)-Fe(III) hydroxy-sulphate or sulphate-containing green rust 2; an electrochemical and Mössbauer spectroscopy study. Corros. Sci. 38, 17511762.CrossRefGoogle Scholar
Génin, J.-M.R., Abdelmoula, M., Refait, Ph. & Simon, L. (1998a) Comparison of the Green Rust Two lamellar double hydroxide class with the Green Rust One pyroaurite class: Fe(II)-Fe(III) sulphate and selenate hydroxides. Hyperf. Inter. (C). 3, 313316.Google Scholar
Génin, J.-M.R., Bourrié G, Trolard, F., Abdelmoula, M., Jaffrezic, A., Refait, Ph., Maître, V., Humbert, B. & Herbillon, A.J. (1998b) Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II)- Fe(III) Green Rusts; occurrences of the mineral in hydromorphic soils. Environ. Sci. Technol. 32, 10581068.CrossRefGoogle Scholar
Hansen, H.C.B., Borggaard, O.K. & Sorensen, J. (1994) Evaluation of the free energy of formation of Fe(II)- Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite. Geochim. Cosmochim. Acta. 58, 25992608.CrossRefGoogle Scholar
Hansen, H.C.B., Bender Koch C, Nancke-Krogh, H., Borggaard, O.K. & Sorensen, J. (1996) Abiotic nitrate reduction to ammonium: key role of green rust. Environ. Sci. Technol. 30, 20532056.CrossRefGoogle Scholar
Jenkins, I.L. & Monk, C.B. (1950) The conductances of sodium, potassium and lanthanum sulphates at 25°C. J. Am. Chem. Soc. 72, 26952698.CrossRefGoogle Scholar
Johnson, C.E. (1969) Antiferromagnetism of γ-FeOOH: a Mössbauer effect study. J. Phys. C (Solid St. Phys.) 1. 1996-2002.Google Scholar
Kelsall, G.H. & Williams, R.A. (1991) Electrochemical behaviour of ferrosilicides (FexSi) in neutral and alkaline aqueous electrolytes. J. Electrochem. Soc. 138, 931940.CrossRefGoogle Scholar
Lindsay, W.L. (1979) Chemical Equilibria in Soils. Wiley Interscience, New York.Google Scholar
Miyamoto, H., Shinjo, T., Bando, Y. & Takada, T. (1967) Mössbauer effect of Fe57 in Fe(OH)2. Bull. Inst. Chem. Res. Kyoto Univ. 45, 333341.Google Scholar
Murad, E. (1982) The characterisation of goethite by Mössbauer spectroscopy. Am. Miner. 14, 273283.Google Scholar
Murad, E. & Schwertmann, U. (1984) The influence of crystallinity on the Mössbauer spectrum of lepidocroref. Mineral. Mag. 48, 507511.CrossRefGoogle Scholar
Olowe, A.A. & Génin, J.-M.R. (1989) Potential-pH equilibrium diagrams for the iron-water system in the presence of sulphate ions: Domain of existence of green rust 2. Proc. Int. Symp. Corros. Sci. Engng., CEBELCOR. RT297, 363390.Google Scholar
Olowe, A.A. & Génin, J.-M.R. (1991) The mechanism of oxidation of Fe(II) hydroxide in sulphated aqueous media: importance of the initial ratio of the reactants. Corros. Sci. 32, 965984.CrossRefGoogle Scholar
Olowe, A.A., Refait, Ph. & Génin, J.-M.R. (1991) Influence of concentration on the oxidation of ferrous hydroxide in basic sulphated medium: particle size analysis of goethite and delta FeOOH. Corros. Sci. 32, 10031020.CrossRefGoogle Scholar
Ponnamperuma, F.N., Tianco, E.M. & Loy, T. (1967) Redox equilibria in flooded soils: I. The iron hydroxide system. Soil Sci. 103, 374382.CrossRefGoogle Scholar
Pourbaix, M. (1966) Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press Ltd., Oxford.Google Scholar
Randall, M. & Frandsen, M. (1932) The standard electrode potential of iron and the activity coefficient of Fe(II) chloride. J. Am. Chem. Soc. 54, 4754.CrossRefGoogle Scholar
Refait, Ph. & Génin, J.-M.R. (1993) The oxidation of Fe(II) hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one. Corros. Sci. 34, 797819.CrossRefGoogle Scholar
Refait, Ph. & Génin, J.-M.R. (1994) The transformation of chloride-containing green rust one into sulphated green rust two by oxidation in mixed CP and Subaqueous media. Corros. Sci. 36, 5564.CrossRefGoogle Scholar
Refait, Ph. & Génin, J.-M.R. (1996) Chloride-containing ferrous hydroxides. S1F Conf. Proc. 50, 5558.Google Scholar
Refait, Ph., Charton, A. & Génin, J.-M.R. (1998) Identification, composition, thermodynamic and structural properties of a pyroaurite-like Fe(II)- Fe(III) hydroxyoxalate green rust. Eur. J. Solid St. Inorg. Chem.. 35, 655666.CrossRefGoogle Scholar
Schwertmann, U. & Fechter, H. (1994) The formation of green rust and its transformation to lepidocroref. Clay Miner. 29, 8792.CrossRefGoogle Scholar
Taylor, H.F.W. (1973) Crystal structures of some double hydroxide minerals. Mineral. Mag. 39, 377389.CrossRefGoogle Scholar
Trolard, F., Abdelmoula, M., Bourrié G., Humbert, B. & Génin, J.-M.R. (1996) Evidence of the occurrence of a “Green Rust” component in hydromorphic soils - Proposition of the existence of a new mineral: “fougérite”. Comp. Rend. Acad. Sci. Paris. 323, IIA, 1015-1022.Google Scholar
Trolard, F., Génin, J.-M.R., Abdelmoula, M., Bourrié G., Humbert, B. & Herbillon, A.J. (1997) Identification of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochim. Cosmochim. Acta. 61, 11071111.CrossRefGoogle Scholar
Van der Woude, F. & Dekker, A.J. (1966) Mössbauer effect in α-FeOOH. Phys. Stat. Sol. 13, 181193.CrossRefGoogle Scholar
Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. & Nutall, R.L. (1982) The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref Data. 11 (suppl. 2).Google Scholar
Yang, X. (1982) Problems encountered in the setting-up of equilibrium diagrams of the oxygen-hydrogeniron system. CEBELCOR. RT263, 177190.Google Scholar
55
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Chemical composition and Gibbs standard free energy of formation of Fe(II)-Fe(III) hydroxysulphate green rust and Fe(II) hydroxide
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Chemical composition and Gibbs standard free energy of formation of Fe(II)-Fe(III) hydroxysulphate green rust and Fe(II) hydroxide
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Chemical composition and Gibbs standard free energy of formation of Fe(II)-Fe(III) hydroxysulphate green rust and Fe(II) hydroxide
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *