Hostname: page-component-cc8bf7c57-77pjf Total loading time: 0 Render date: 2024-12-09T20:38:40.977Z Has data issue: false hasContentIssue false

Characterization for industrial applications of clays from Lembo deposit, Mount Bana (Cameroon)

Published online by Cambridge University Press:  09 July 2018

P. Pialy
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux, Département de Chimie Inorganique, Faculté des Sciences, B.P. 812 Yaoundé, Cameroon Equipe de Géologie Economique et Environnementale, Département des Sciences de la Terre, Faculté des Sciences, B.P. 812 Yaoundé, Cameroon
C. Nkoumbou*
Affiliation:
Equipe de Géologie Economique et Environnementale, Département des Sciences de la Terre, Faculté des Sciences, B.P. 812 Yaoundé, Cameroon Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, 15 Avenue du Charmois, BP 40 F- 54501 Vandoeuvre-lès-Nancy, France
F. Villiéras
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, 15 Avenue du Charmois, BP 40 F- 54501 Vandoeuvre-lès-Nancy, France
A. Razafitianamaharavo
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, 15 Avenue du Charmois, BP 40 F- 54501 Vandoeuvre-lès-Nancy, France
O. Barres
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, 15 Avenue du Charmois, BP 40 F- 54501 Vandoeuvre-lès-Nancy, France
M. Pelletier
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, 15 Avenue du Charmois, BP 40 F- 54501 Vandoeuvre-lès-Nancy, France
G. Ollivier
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, 15 Avenue du Charmois, BP 40 F- 54501 Vandoeuvre-lès-Nancy, France
I. Bihannic
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, 15 Avenue du Charmois, BP 40 F- 54501 Vandoeuvre-lès-Nancy, France
D. Njopwouo
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux, Département de Chimie Inorganique, Faculté des Sciences, B.P. 812 Yaoundé, Cameroon
J. Yvon
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, 15 Avenue du Charmois, BP 40 F- 54501 Vandoeuvre-lès-Nancy, France
J-. P. Bonnet
Affiliation:
Groupe d'Etude des Matériaux Hétérogènes, ENSCI, 47 à 73, avenue Albert Thomas, 87065 Limoges Cedex, France

Abstract

The Lembo clay deposit occurs on orthogneiss, but it also comprises clays with litho-relicts of volcanic rocks. In this study, ten samples from two sites were investigated. The mineralogical compositions consisted of kaolinite + halloysite + illite + quartz + hematite + anatase ± rutile ± orthoclase ± sanidine ± magnetite ± maghemite ± goethite ± Ba-Al-Fe-phosphates ± carbonates ± sulphates. Kaolinite-halloysite and quartz are the prevailing minerals. Some volcanicderived clays contain Fe-rich kaolinite-halloysite (9.6–14.1 wt.% Fe2O3). The chemical compositions, colours and specific surface area (SSA) measurements reveal two groups of clays: one with a positive whiteness index (IB), small SSA and small Fe content, and the other showing a large SSA, negative IB and relatively large Fe contents. The compositions of the first group are close to those of clays from the Mayouom deposit (Cameroon), and from some European commercial kaolins used in ceramics. Relatively Fe-rich clay materials may conform to most formulations of earthen bricks. As a whole, the Lembo clay deposit comprises various compositions of kaolinitic clays, which may yield the opportunity for extensive application in ceramics.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abajo, M.F. (2000) Manual sobre fabricacion de baldosas, tejas y ladrillos (Beralmar, S.A.). Madrid.Google Scholar
Balan, E., Saitta, A.M., Mauri, F. & Calas, G. (2001) First principles modelling of the infrared spectrum of kaolinite. American Mineralogist, 86, 13211330.Google Scholar
Balek, V. & Murat, M. (1996) The emanation thermal analysis of kaolinite clay minerals. Thermochimica Ada, 282/283, 385-397.Google Scholar
Barrett, P.E., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of American Chemical Society, 73, 373380.CrossRefGoogle Scholar
Benco, L., Tunega, D., Hafner, J. & Lischka, H. (2001) Orientation of OH groups in kaolinite and dickite: Ab initio molecular dynamics study. American Mineralogist, 86, 10571065.Google Scholar
Bentabol, M., Cruz, M.D.R., Huertas, F.J. & Linares, J. (2006) Chemical and structural variability of illitic phases formed from kaolinite in hydrothermal conditions. Applied Clay Science, 32, 111124.CrossRefGoogle Scholar
Brown, G. & Brindley, G.W. (1984) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London, 495 pp.Google Scholar
Caillère, S. & Henin, S. (1976) Physical and chemical properties of phyllosilicates. Pp. 185267 in: Crystallography and Crystal Chemistry of Materials with Layered Structures (Levy, F., editor). D. Reidel publishing company, Dordrecht.Google Scholar
Caillère, S., Henin, S. & Rautureau, M. (1989) Les argiles. Septima, Paris, 126 pp.Google Scholar
Carignan, J., Hild, P., Mevelle, G., Morel, J. & Yeghicheyan, D. (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandard Newsletters, 25, 1, 87-198.Google Scholar
Cases, J.M., Liétard, O., Yvon, J. & Delon, J.F. (1982) Etude des propriétés cristallochimiques, morphologiques, superflcielles de kaolinites désordonnées. Bulletin de Mineralogie, 105, 439455.CrossRefGoogle Scholar
De Donate, P., Villiéras, F., Barres, O. & Yvon, J. (1993) Sur la possibilité d'observer les vibrations de valence OD aux dilutions naturelles: apport de la spectro-métrie IRTF en réflexion diffuse. Comptes Rendus de l'Académie des Sciences, Paris, 316, 17571762.Google Scholar
De Donate, P., Cheilletz, A., Barres, O. & Yvon, J. (2004). Infrared spectroscopy of OD vibrators in minerals at natural dilution: hydroxyl groups in talc and kaolinite, and structural water in beryl and emerald. Applied Spectroscopy, 58, 521527.Google Scholar
Delineau, T., Allard, T., Muller, J.-P., Barres, O., Yvon, J. & Cases, J.-M. (1994) FTIR reflectance vs EPR studies of structural iron in kaolinites. Clays and Clay Minerals, 42, 308320.CrossRefGoogle Scholar
Déruelle, B., Moreau, C., Nkoumbou, C., Kambou, R., Lissom J. Njonfang, E. & Nono, A. (1991) The Cameroon Line: a review. Pp. 274327 in: Magmatism in Extensional Structural Settings (Kampunzu, A.B. & Lubala, R.T.). Springer, Berlin.CrossRefGoogle Scholar
Djangang, C., Elimbi, A., Nkoumbou, C., Lecomte, G., Melo, U.C., Yvon, J., Bonnet, J.P. & Njopwouo, D. (2007) Characteristics and ceramics properties (1200-1500°C) of clays from Mayouom deposit, West Cameroon. Industrial Ceramics, 27, 7988.Google Scholar
Dupain, R., Lanchon, R. & Saint-Arroman, J.C. (2000) Granulats, sols ciments et betons,. Casteilla, Paris, 136 pp.Google Scholar
Elimbi, A. & Njopwouo, D. (2002) Firing characteristics of ceramics from the Bomkoul kaolinitic clay deposit (Cameroun). Tile & Brick International, 18, 364369.Google Scholar
Fan, H., Song, B. & Li, Q. (2006) Thermal behavior of goethite during transformation to hematite. Materials Chemistry and Physics, 98, 148153.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp 331364 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society, London.Google Scholar
Franco, F., Pérez-Maqueda, L.A. & Pérez-Rodriguez, J.L. (2003) The influence of ultrasound on the thermal behaviour of a well ordered kaolinite. Thermochimica Ada, 404, 7179.CrossRefGoogle Scholar
Fripiat, J.J. & van Olphen, H. (1979) Data Handbook for Clay Materials and Other Non-Metallic Minerals. Pergamon Press, New York, 319333.Google Scholar
Heide, K. & Földvari, M. (2006) High temperature mass spectrometric gas-release studies of kaolinite Al2[Si2O5(OH)4] decomposition. Thermochimica Ada, 446, 106112.Google Scholar
Holdridge, D.A. & Vaughan, F. (1957) The kaolin minerals (kandites). Pp. 98139 in: The Differential Thermal Investigation of Clays (Mackenzie, R.C., editor). Mineralogical Society, London.Google Scholar
Kamga, R., Nguetnkam, J.P. & Villiéras, F. (2001) Caracterisation des argiles du Nord Cameroun en vue de leur utilisation dans la decoloration des huiles végétales. Pp. 247257 in : Actes de la première conférence sur la valorisation des matériaux argileux au Cameroun (Nkoumbou, C. & Njopwouo, D., editors). Yaoundé, Cameroon.Google Scholar
Karakas, Z. & Kadir, S. (2000) Devritrification of volcanic glasses in Konya volcanic units, Turkey. Turkish Journal of Earth Sciences, 9, 3946.Google Scholar
Kuepouo, G., Tchouankoue, J.-P., Takahashi, N. & Sato, H. (2006) Transitional tholeiitic basalts in the Tertiary Bana volcano-plutonic complex, Cameroon Line. Journal of African Earth Sciences, 45, 318332.Google Scholar
Lee, S.Y. & Kim, S.J. (2002) Adsorption of naphtalene by HDTMA modified kaolinite and halloysite. Applied Clay Science, 22, 5563.Google Scholar
Levin, E.M., Robbins, C.R. & McMurdie, H.F. (1969) Phase Diagrams for Ceramists. The American Ceramic Society, Columbus, Ohio. 156 pp.Google Scholar
Ligas, P., Uras, I., Dondi, M. & Marsigli, M. (1997) Kaolinitic materials from Romana (North-West Sardinia, Italy) and their ceramic properties. Applied Clay Science, 12, 145163.Google Scholar
Loughnan, F.C. & Craig, D.C. (1960) An occurrence of fully-hydrated halloysite at Muswellbrook, N.S.W. The American Mineralogist, 45, 783790.Google Scholar
Mackenzie, R.C. (1957) The oxides of iron, aluminium and manganese. Pp. 299328 in: The Differential Thermal Investigation of Clays (Mackenzie, R.C., editor). Mineralogical Society, London.Google Scholar
Nguetnkam, J.P. (2004) Les argiles des vertisols et des sols fersiallitiques de 1'Extrême-Nord du Cameroun: genèse, propriétés cristallochimiques et texturales, typologie et applications à la décoloration des huiles végétales. PhD Thesis, University of Yaoundé, Cameroon.Google Scholar
Nguetnkam, J.P., Kamga, R., Villiéras, F., Ekodeck, G.E. & Yvon, J. (2007) Pedogenic formation of smectites in a vertisol developed from granitic rock from Kaele (Cameroon, Central Africa). Clay Minerals, 42, 487501.Google Scholar
Njopwouo, D. (1984) Minéralogie et physico-chimie des argiles de Bomkoul et de Balengou (Cameroun). Utilisation dans la polymérisation du styrène et dans le renforcement du caoutchouc naturel. PhD Thesis, University of Yaoundé, Cameroon, 300 pp.Google Scholar
Njopwouo, D., Roques, G. & Wandji, R. (1987) A contribution to the study of the catalytic action of clays on the polymerization of styrene: I. Characterization of polystyrenes. Clays Minerals, 22, 145156.Google Scholar
Njopwouo, D., Roques, G. & Wandji, R. (1988) A contribution to the study of the catalytic action of clays on the polymerization of styrene: Reaction mechanism. Clay Minerals, 23, 3543.Google Scholar
Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin-Nomade, A., Yvon, J. & Martin, F. (2006) Genesis of Mayouom kaolin deposit (Western Cameroon). Applied Clay Science, 32, 125140.Google Scholar
Njoya, D., Elimbi, A., Nkoumbou, C., Njoya, A., Njopwouo, D., Lecomte, G. & Yvon, J. (2007) Contribution à l'étude physicochimique et minéralogique de quelques échantillons d'argiles de Mayouom (Cameroun). Annales de Chimie: Sciences des Matériaux, 32, 5568.Google Scholar
Nkoumbou, C., Njopwouo, D., Villiéras, F., Njoya, A., Yonta Ngouné, C., Ngo Ndjock, L., Tchoua, F. & Yvon, J. (2006) Talc indices from Boumnyebel (Central Cameroon), physico-chemical characteristics and geochemistry. Journal of African Earth Sciences, 45, 6173.Google Scholar
Nkoumbou, C., Villiéras, F., Njopwouo, D., Yonta Ngouné, C., Barrès, O., Pelletier, M., Razafitianaharavo, A. & Yvon, J. (2008a) Physicochemical properties of talc ore from three deposits of Lamal Pougue area (Yaounde Pan- African belt, Cameroon), in relation to industrial uses. Applied Clay Science, doi:10.1016/j.clay.2007.10.006.Google Scholar
Nkoumbou, C., Villiéras, F., Njopwouo, D., Barres, O., Bihiannic, I., Pelletier, M., Razafitianamaharavo, A., Metang, V., Yonta Ngoune, C. & Yvon, J. (2008b) Physicochemical properties of talc ore from Poutkelle and Memel deposits (Central Cameroon). Clay Minerals, 43, 317337.Google Scholar
Petit, S. & Decarreau, A. (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Minerals, 25, 181196.Google Scholar
Qtaitat, M.A. & Al-Trawneh, I.N. (2005) Characterization of kaolinite of the Baten El-Ghoul region south Jordan by infrared speetroseopy. Spectrochimica Acta, A61, 15191523.Google Scholar
Quantin, P., Gautheyrou, J. & Lorenzoni, P. (1988) Halloysite formation through in situ weathering of volcanic glass from trachytic pumices, Vico's volcano, Italy. Clay Minerals, 23, 423437.Google Scholar
Ruan, H.D., Frost, R.L., Kloprogge, J.T. & Duong, L. (2002) Infrared speetroseopy of goethite dehydroxylation. II. Effect of aluminium substitution on the behaviour of hydroxyl units. Spectrochimica Acta, A58, 479491.Google Scholar
Soro, N.S. (2003) Influence des ions fer sur les transformations thermiques de la kaolinite. PhD Thesis, University of Limoges, France, 158 pp.Google Scholar
Villiéras, F. (1993) Etude des modifications des proprietes du talc et de la chlorite par traitement thermique. PhD Thesis, E.N.S.G., I.N.P.L., Nancy, France, 248 pp.Google Scholar
Wouatong, G.A., Kitagawa, R., Takeno, S., Tchoua, F.M. & Njopwouo, D. (1996) Morphological transformation of kaolin minerals from granite saprolite in the Western part of Cameroon. Clay Science, 10, 6781.Google Scholar
Yalcin, A. (2007) The effect of clays on landslides: a case study. Applied Clay Science, 38, 7785.Google Scholar
Yvon, J., Baudracco, J., Cases, J.M. & Weiss, J. (1990) Eléments de minéralogie quantitative en micro-analyse des argiles. Pp. 473489 in: Matériaux Argileux, Structures, Propriétés et Applications (Decarreau, A., editor). SFMC — GFA, Paris.Google Scholar
Yvon, J., Cases, J.M., Villiéras, F., Michot, L. & Thomas, F. (2002) Les minéraux techniques naturels: connaissance, typologie et propriétés d'usage. Comptes Rendus Geoscience, Paris, 334, 717730.Google Scholar