Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-18T15:49:48.580Z Has data issue: false hasContentIssue false

Adsorption of gold nanoparticles on illite under high solid/liquid ratio and initial pH conditions

Published online by Cambridge University Press:  25 August 2023

Ping Zeng
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China University of Chinese Academy of Sciences, Beijing, China
Xin Nie
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China
Zonghua Qin
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China
Suxing Luo
Affiliation:
Department of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi, China
Yuhong Fu
Affiliation:
School of Geographic and Environmental Sciences, Guizhou Normal University, Guiyang, China
Wenbin Yu
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China
Meizhi Yang
Affiliation:
Office of Academic Research, Guizhou Open University, Guiyang, China
Wenqi Luo
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China University of Chinese Academy of Sciences, Beijing, China
Hai Yang
Affiliation:
Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, China
Quan Wan*
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China CAS Center for Excellence in Comparative Planetology, Hefei, China
*
Corresponding author: Quan Wan; E-mail: wanquan@vip.gyig.ac.cn

Abstract

Adsorption of nanoparticles on minerals affects the fate and transport of nanoparticles directly and is of great significance to many fields, including research into ore deposits, geochemistry, the environment and mineral materials. Whereas many previous studies have been conducted under the equilibrium pH and low solid (mineral) to liquid (nanoparticle suspension) ratio conditions, adsorption processes under initial pH and high solid/liquid ratio conditions may represent many important yet underexamined complex scenarios. To fill in this research gap, the adsorption of gold nanoparticles on illite was investigated experimentally at a relatively high solid/liquid ratio of 5 g L–1 and the effects of initial pH, ionic strength, citrate concentration, temperature and illite particle size were evaluated. The adsorbed amount of gold nanoparticles (from <5% to nearly 100%) increased with increasing ionic strength, temperature and citrate concentration and decreased with increasing pH and illite particle size. The presence of illite resulted in the dynamic evolution of the pH of the suspension, which, along with solution chemistry parameters, controlled the electrostatic interaction of illite and gold nanoparticles. The adsorption results, scanning electron microscopy observations and surface properties of illite suggest that the negatively charged gold nanoparticles were adsorbed predominantly on the positive illite edges through electrostatic interaction. The electrostatic attraction between illite and gold nanoparticles appeared to be strong, supported by the minor amount of desorption. These research findings are expected to provide a valuable reference regarding many critical issues in the geosciences as well as for industrial applications.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chun Hui Zhou

References

Abbas, Q., Yousaf, B., Amina, A.M.U., Munir, M.A.M., El-Naggar, A., Rinklebe, J. & Naushad, M. (2020a) Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: a review. Environment International, 138, 105646.CrossRefGoogle ScholarPubMed
Abbas, Q., Yousaf, B., Ullah, H., Ali, M.U., Ok, Y.S. & Rinklebe, J. (2020b) Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms. Critical Reviews in Environmental Science and Technology, 50, 25232581.10.1080/10643389.2019.1705721CrossRefGoogle Scholar
Ahmed, B., Rizvi, A., Ali, K., Lee, J., Zaidi, A., Khan, M.S. & Musarrat, J. (2021) Nanoparticles in the soil–plant system: a review. Environmental Chemistry Letters, 19, 15451609.10.1007/s10311-020-01138-yCrossRefGoogle Scholar
Alvarez-Puebla, R.A., Arceo, E., Goulet, P.J.G., Garrido, J.J. & Aroca, R.F. (2005) Role of nanoparticle surface charge in surface-enhanced Raman scattering. Journal of Physical Chemistry B, 109, 37873792.CrossRefGoogle ScholarPubMed
Amde, M., Liu, J.F., Tan, Z.Q. & Bekana, D. (2017) Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environmental Pollution, 230, 250267.CrossRefGoogle ScholarPubMed
Avena, M. (2003) Proton binding at clay surfaces in water. Applied Clay Science, 24, 39.CrossRefGoogle Scholar
Bakken, B.M., Hochella, M.F., Marshall, A.F. & Turner, A.M. (1989) High-resolution microscopy of gold in unoxidized ore from the Carlin mine, Nevada. Economic Geology, 84, 171179.10.2113/gsecongeo.84.1.171CrossRefGoogle Scholar
Barton, L.E., Therezien, M., Auffan, M., Bottero, J.Y. & Wiesner, M.R. (2014) Theory and methodology for determining nanoparticle affinity for heteroaggregation in environmental matrices using batch measurements. Environmental Engineering Science, 31, 421427.CrossRefGoogle Scholar
Bedelean, H., Maicaneanu, A., Burca, S. & Stanca, M. (2009) Removal of heavy metal ions from wastewaters using natural clays. Clay Minerals, 44, 487495.CrossRefGoogle Scholar
Bergaya, F. & Lagaly, G., editors (2013) Handbook of Clay Science. Elsevier, Amsterdam, The Netherlands, 84 pp.Google Scholar
Bond, G.C. & Thompson, D.T. (2006) Status of catalysis by gold following an AURICAT Workshop. Applied Catalysis A – General, 302, 14.10.1016/j.apcata.2006.01.001CrossRefGoogle Scholar
Borm, P.J.A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K. et al. (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology, 3, 11.CrossRefGoogle ScholarPubMed
Braissant, O., Verrecchia, E.P. & Aragno, M. (2002) Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Science of Nature, 89, 366370.10.1007/s00114-002-0340-0CrossRefGoogle ScholarPubMed
Brar, S.K., Verma, M., Tyagi, R.D. & Surampalli, R.Y. (2010) Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts. Waste Management, 30, 504520.10.1016/j.wasman.2009.10.012CrossRefGoogle ScholarPubMed
Buzea, C., Pacheco, I.I. & Robbie, K. (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, MR17MR71.CrossRefGoogle ScholarPubMed
Cao, J.J. & Cheng, S.T. (2020) Characteristics of particles in groundwater and their prospecting significance for the Shijiangshan Pb–Zn–Ag deposit, Inner Mongolia, China. Journal of Geochemical Exploration, 217, 106592.CrossRefGoogle Scholar
Chen, H., Chen, Y.G., Zheng, X., Li, X. & Luo, J.Y. (2014) How does the entering of copper nanoparticles into biological wastewater treatment system affect sludge treatment for VFA production. Water Research, 63, 125134.10.1016/j.watres.2014.06.024CrossRefGoogle ScholarPubMed
Cottet, L., Almeida, C.A.P., Naidek, N., Viante, M.F., Lopes, M.C. & Debacher, N.A. (2014) Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Applied Clay Science, 95, 2531.CrossRefGoogle Scholar
Das, P.K. (2017) Effect of temperature on zeta potential of functionalized gold nanorod. Microfluidics and Nanofluidics, 21, 95.CrossRefGoogle Scholar
de Barros, A., Constantino, C.J.L., da Cruz, N.C., Bortoleto, J.R.R. & Ferreira, M. (2017) High performance of electrochemical sensors based on LbL films of gold nanoparticles, polyaniline and sodium montmorillonite clay mineral for simultaneous detection of metal ions. Electrochimica Acta, 235, 700708.CrossRefGoogle Scholar
Delhorme, M., Labbez, C., Caillet, C. & Thomas, F. (2010) Acid–base properties of 2:1 clays. I. Modeling the role of electrostatics. Langmuir, 26, 92409249.CrossRefGoogle Scholar
Derjaguin, B.V. & Landau, L. (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica USSR, 14, 633662.Google Scholar
Dong, F. & Zhou, Y. (2020) Distinct mechanisms in the heteroaggregation of silver nanoparticles with mineral and microbial colloids. Water Research, 170, 115332.10.1016/j.watres.2019.115332CrossRefGoogle ScholarPubMed
Elimelech, M., Gregory, J., Jia, X. & Williams, R.A., editors (1995) Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann, Oxford, UK, 261423 pp.Google Scholar
Floody, M.C., Theng, B.K.G., Reyes, P. & Mora, M.L. (2009) Natural nanoclays: applications and future trends – a Chilean perspective. Clay Minerals, 44, 161176.10.1180/claymin.2009.044.2.161CrossRefGoogle Scholar
Freitas, C. & Muller, R.H. (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. International Journal of Pharmaceutics, 168, 221229.10.1016/S0378-5173(98)00092-1CrossRefGoogle Scholar
Frens, G. (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature – Physical Science, 241, 2022.10.1038/physci241020a0CrossRefGoogle Scholar
Frondel, C. (1938) Stability of colloidal gold under hydrothermal conditions. Economic Geology, 33, 120.10.2113/gsecongeo.33.1.1CrossRefGoogle Scholar
Fu, Y.H., Nie, X., Qin, Z.H., Li, S.S. & Wan, Q. (2017) Effect of particle size and pyrite oxidation on the sorption of gold nanoparticles on the surface of pyrit. Journal of Nanoscience and Nanotechnology, 17, 63676376.CrossRefGoogle Scholar
Fu, Y.H., Qin, Z.H., Nie, X., Li, S.S. & Wan, Q. (2020) The effect of pH on the sorption of gold nanoparticles on illite. Acta Geochimica, 39, 172180.10.1007/s11631-020-00395-6CrossRefGoogle Scholar
Gaines, G.L. & Vedder, W. (1964) Dehydroxylation of muscovite. Nature, 201, 495.CrossRefGoogle Scholar
Gallego-Urrea, J.A., Hammes, J., Cornelis, G. & Hassellöv, M. (2016) Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: influence of initial particle concentration. NanoImpact, 3–4, 6774.CrossRefGoogle Scholar
Goldberg, R.N., Kishore, N. & Lennen, R.M. (2002) Thermodynamic quantities for the ionization reactions of buffers. Journal of Physical and Chemical Reference Data, 31, 231370.CrossRefGoogle Scholar
Gradusov, B.P. (1974) A tentative study of clay mineral distribution in soils of the world. Geoderma, 12, 4955.CrossRefGoogle Scholar
Guo, Q.Y., Wang, Z.Q., Xu, Q.J, Mao, H., Zhang, D., Ghosh, S. et al. (2020) Suspended state heteroaggregation kinetics of kaolinite and fullerene (nC60) in the presence of tannic acid: effect of π–π interactions. Science of the Total Environmental, 713, 136559.CrossRefGoogle ScholarPubMed
Hannington, M., Haroardottir, V., Garbe-Schoenberg, D. & Brown, K.L. (2016) Gold enrichment in active geothermal systems by accumulating colloidal suspensions. Nature Geoscience, 9, 299303.10.1038/ngeo2661CrossRefGoogle Scholar
Hendren, C.O., Mesnard, X., Droge, J. & Wiesner, M.R. (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environmental Science & Technology, 45, 25622569.CrossRefGoogle ScholarPubMed
Hochella, M.F. (2002) Nanoscience and technology the next revolution in the Earth sciences. Earth and Planetary Science Letters, 203, 593605.10.1016/S0012-821X(02)00818-XCrossRefGoogle Scholar
Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L. & Twining, B.S. (2008) Nanominerals, mineral nanoparticles, and Earth systems. Science, 319, 16311635.CrossRefGoogle ScholarPubMed
Hochella, M.F., Mogk, D.W., Ranville, J., Allen, I.C., Luther, G.W., Marr, L.C. et al. (2019) Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 363, 14141423.CrossRefGoogle ScholarPubMed
Hong, H.L., Wang, Q.Y., Chang, J.P., Liu, S.R. & Hu, R.Z. (1999) Occurrence and distribution of invisible gold in the Shewushan supergene gold deposit, southeastern Hubei, China. Canadian Mineralogist, 37, 15251531.Google Scholar
Hotze, E.M., Phenrat, T. & Lowry, G.V. (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. Journal of Environmental Quality, 39, 19091924.CrossRefGoogle ScholarPubMed
Hough, R.M., Noble, R.R.P. & Reich, M. (2011) Natural gold nanoparticles. Ore Geology Reviews, 42, 5561.CrossRefGoogle Scholar
Hough, R.M., Noble, R.R.F., Hitchen, G.J., Hart, R., Reddy, S.M., Saunders, M. et al. (2008) Naturally occurring gold nanoparticles and nanoplates. Geology, 36, 571574.CrossRefGoogle Scholar
Hu, G., Cao, J.J., Wang, C.Y., Lu, M.Q. & Lin, Z.X. (2020) Study on the characteristics of naturally formed TiO2 nanoparticles in various surficial media from China. Chemical Geology, 550, 119703.CrossRefGoogle Scholar
Huang, G.X., Guo, H.Y., Zhao, J, Liu, Y.H. & Xing, B.S. (2016) Effect of co-existing kaolinite and goethite on the aggregation of graphene oxide in the aquatic environment. Water Research, 102, 313320.CrossRefGoogle ScholarPubMed
Huertas, F.J., Chou, L. & Wollast, R. (2001) Kaolinite dissolution rates in batch experiments at room temperature and pressure: reply to ‘On the interpretation of closed system mineral dissolution experiments,’ comment by Eric H. Oelkers, Jacques Schott, and Jean-Luc Devidal. Geochimica et Cosmochimica Acta, 65, 44334434.CrossRefGoogle Scholar
Johnson, C.A. & Lenhoff, A.M. (1996) Adsorption of charged latex particles on mica studied by atomic force microscopy. Journal of Colloid and Interface Science, 179, 587599.CrossRefGoogle Scholar
Keller, A.A., McFerran, S., Lazareva, A. & Suh, S. (2013) Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15, 1692.CrossRefGoogle Scholar
King, J., Williams-Jones, A.E., van Hinsberg, V. & Williams-Jones, G. (2014) High-sulfidation epithermal pyrite-hosted Au (Ag–Cu) ore formation by condensed magmatic vapors on Sangihe Island, Indonesia. Economic Geology, 109, 17051733.10.2113/econgeo.109.6.1705CrossRefGoogle Scholar
Kusebauch, C., Oelze, M. & Gleeson, S.A. (2018) Partitioning of arsenic between hydrothermal fluid and pyrite during experimental siderite replacement. Chemical Geology, 500, 136147.CrossRefGoogle Scholar
Kusebauch, C., Gleeson, S.A. & Oelze, M. (2019) Coupled partitioning of Au and As into pyrite controls formation of giant Au deposits. Science Advances, 5, eaav5891.CrossRefGoogle ScholarPubMed
Labille, J., Harns, C., Bottero, J.Y. & Brant, J. (2015) Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids. Environmental Science & Technology, 49, 66086616.10.1021/acs.est.5b00357CrossRefGoogle ScholarPubMed
Lintern, M., Anand, R., Ryan, C. & Paterson, D. (2013) Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits. Nature Communications, 4, 2614.CrossRefGoogle ScholarPubMed
Liu, X.D., Lu, X.C., Sprik, M., Cheng, J., Meijer, E.J. & Wang, R.C. (2013) Acidity of edge surface sites of montmorillonite and kaolinite. Geochimica et Cosmochimica Acta, 117, 180190.CrossRefGoogle Scholar
Liu, X.D., Cheng, J., Sprik, M., Lu, X.C. & Wang, R.C. (2014) Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations. Geochimica et Cosmochimica Acta, 140, 410417.CrossRefGoogle Scholar
Liu, J.B., Hwang, Y.S. & Lenhart, J.J. (2015) Heteroaggregation of bare silver nanoparticles with clay minerals. Environmental Science – Nano, 2, 528540.CrossRefGoogle Scholar
Li, X., He, E., Zhang, M.Y., Peijnenburg, W.J.G.M., Liu, Y., Song, L. et al. (2020) Interactions of CeO2 nanoparticles with natural colloids and electrolytes impact their aggregation kinetics and colloidal stability. Journal of Hazardous Materials, 386, 121973.CrossRefGoogle ScholarPubMed
Luo, S.X., Nie, X., Yang, M.Z., Fu, Y.H., Zeng, P. & Wan, Q. (2018) Sorption of differently charged gold nanoparticles on synthetic pyrite. Minerals, 8, 428.CrossRefGoogle Scholar
Lu, X.Y., Lu, T.T., Zhang, H.J., Shang, Z.B., Chen, J.Y., Wang, Y. et al. (2019) Effects of solution chemistry on the attachment of graphene oxide onto clay minerals. Environmental Science – Process & Impacts, 21, 506513.CrossRefGoogle ScholarPubMed
Machado, S., Stawinski, W., Slonina, P., Pinto, A.R., Grosso, J.P., Nouws, H.P. et al. (2013) Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Science of the Total Environment, 461, 323329.CrossRefGoogle Scholar
Mackenzie, R.C. & Mitchell, B.D. (1966) Clay mineralogy. Earth Science Reviews, 2, 4791.CrossRefGoogle Scholar
Martin, S.A., Valdes, L., Merida, F., de Menorval, L.C., Velazquez, M. & Rivera, A. (2018) Natural clay from Cuba for environmental remediation. Clay Minerals, 53, 193201.CrossRefGoogle Scholar
McLeish, D.F., Williams-Jones, A.E., Vasyukova, O.V., Clark, J.R. & Board, W.S. (2021) Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature. Proceedings of the National Academy of Sciences of the United States of Amecica, 118, e2100689118.CrossRefGoogle ScholarPubMed
Mikhlin, Y.L. & Romanchenko, A.S. (2007) Gold deposition on pyrite and the common sulfide minerals: an STM/STS and SR-XPS study of surface reactions and Au nanoparticles. Geochimica et Cosmochimica Acta, 71, 59856001.CrossRefGoogle Scholar
Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A. et al. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science, 314, 638641.CrossRefGoogle ScholarPubMed
Nowack, B. & Bucheli, T.D. (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 522.CrossRefGoogle ScholarPubMed
Palenik, C.S., Utsunomiya, S., Reich, M., Kesler, S.E., Wang, L.M. & Ewing, R.C. (2004) ‘Invisible’ gold revealed: direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89, 13591366.CrossRefGoogle Scholar
Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M. & Tufenkji, N. (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environmental Science & Technology, 44, 65326549.10.1021/es100598hCrossRefGoogle ScholarPubMed
Petrella, L., Thébaud, N., Fougerouse, D., Evans, K., Quadir, Z. & Laflamme, C. (2020) Colloidal gold transport: a key to high-grade gold mineralization? Mineralium Deposita, 55, 12471254.CrossRefGoogle Scholar
Petrella, L., Thébaud, N., Fougerouse, D., Tattitch, B., Martin, L., Turner, S. et al. (2022) Nanoparticle suspensions from carbon-rich fluid make high-grade gold deposits. Nature Communications, 13, 3795.CrossRefGoogle ScholarPubMed
Philippe, A. & Schaumann, G.E. (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environmental Science & Technology, 48, 89468962.10.1021/es502342rCrossRefGoogle ScholarPubMed
Praetorius, A., Badetti, E., Brunelli, A., Clavier, A., Gallego-Urrea, J.A., Gondikas, A. et al. (2020) Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science – Nano, 7, 351367.CrossRefGoogle Scholar
Ramos, M.E. & Huertas, F.J. (2014) Adsorption of lactate and citrate on montmorillonite in aqueous solutions. Applied Clay Science, 90, 2734.CrossRefGoogle Scholar
Rawat, S., Pullagurala, V.L.R., Adisa, I.O., Wang, Y., Peralta-Videa, J.R. & Gardea-Torresdey, J.L. (2018) Factors affecting fate and transport of engineered nanomaterials in terrestrial environments. Current Opinion in Environmental Science & Health, 6, 4753.CrossRefGoogle Scholar
Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. & Ewing, R.C. (2005) Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 27812796.CrossRefGoogle Scholar
Reith, F. & Cornelis, G. (2017) Effect of soil properties on gold- and platinum nanoparticle mobility. Chemical Geology, 466, 446453.CrossRefGoogle Scholar
Ryan, P.R., Delhaize, E. & Jones, D.L. (2001) Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Biology, 52, 527560.CrossRefGoogle ScholarPubMed
Sadowska, M., Adamczyk, Z. & Nattich-Rak, M. (2014) Mechanism of nanoparticle deposition on polystyrene latex particles. Langmuir, 30, 692699.CrossRefGoogle ScholarPubMed
Saka, E.E. & Gueler, C. (2006) The effects of electrolyte concentration, ion species and pH on the zeta potential and electrokinetic charge density of montmorillonite. Clay Minerals, 41, 853861.CrossRefGoogle Scholar
Sathuluri, R.R., Yoshikawa, H., Shimizu, E., Saito, M. & Tamiya, E. (2011) Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation. PLoS ONE, 6, e22802.CrossRefGoogle ScholarPubMed
Saunders, J.A. & Burke, M. (2017) Formation and aggregation of gold (electrum) nanoparticles in epithermal ores. Minerals, 7, 163.CrossRefGoogle Scholar
Saunders, J.A., Burke, M. & Brueseke, M.E. (2020) Scanning-electron-microscope imaging of gold (electrum) nanoparticles in middle Miocene bonanza epithermal ores from northern Nevada, USA. Mineralium Deposita, 55, 389398.10.1007/s00126-019-00935-yCrossRefGoogle Scholar
Schomburg, J. & Zwahr, H. (1997) Thermal differential diagnosis of mica mineral group. Journal of Thermal Analysis and Calorimetry, 48, 135139.10.1007/BF01978972CrossRefGoogle Scholar
Sharma, V.K., Filip, J., Zboril, R. & Varma, R.S. (2015) Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chemical Society Reviews, 44, 84108423.CrossRefGoogle ScholarPubMed
Sharma, V.K., Sayes, C.M., Guo, B.L., Pillai, S., Parsons, J.G., Wang, C.Y. et al. (2019) Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: a review. Science of the Total Environment, 653, 10421051.CrossRefGoogle ScholarPubMed
Slomberg, D.L., Ollivier, P., Radakovitch, O., Baran, N., Sani-Kast, N., Bruchet, A. et al. (2017) Insights into natural organic matter and pesticide characterisation and distribution in the Rhone River. Environmental Chemistry, 14, 6473.CrossRefGoogle Scholar
Sotirelis, N.P. & Chrysikopoulos, C.V. (2016) Heteroaggregation of graphene oxide nanoparticles and kaolinite colloids. Science of the Total Environment, 579, 736744.CrossRefGoogle ScholarPubMed
Southam, G., Lengke, M.F., Fairbrother, L. & Reith, F. (2009) The biogeochemistry of gold. Elements, 5, 303307.CrossRefGoogle Scholar
Spurgeon, D.J., Lahive, E. & Schultz, C.L. (2020) Nanomaterial transformations in the environment: effects of changing exposure forms on bioaccumulation and toxicity. Small, 16, 2000618.CrossRefGoogle ScholarPubMed
Syngouna, V.I., Giannadakis, G.I. & Chrysikopoulos, C.V. (2018) Interaction of graphene oxide nanoparticles with quartz sand and montmorillonite colloids. Environmental Technology, 41, 11271138.CrossRefGoogle Scholar
Tang, Z. & Cheng, T. (2018) Stability and aggregation of nanoscale titanium dioxide particle (nTiO2): effect of cation valence, humic acid, and clay colloids. Chemosphere, 192, 5158.CrossRefGoogle ScholarPubMed
Thill, A., Moustier, S., Garnier, J.M., Estournel, C., Naudin, J.J. & Bottero, J.Y. (2001) Evolution of particle size and concentration in the Rhone River mixing zone: influence of salt flocculation. Continental Shelf Reasearch, 21, 21272140.CrossRefGoogle Scholar
Thio, B.J.R., Lee, J.H., Meredith, J.C. & Keller, A.A. (2010) Measuring the influence of solution chemistry on the adhesion of Au nanoparticles to mica using colloid probe atomic force microscopy. Langmuir, 26, 1399514003.CrossRefGoogle ScholarPubMed
Tiede, K., Hassellov, M., Breitbarth, E., Chaudhry, Q. & Boxall, A.B.A. (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography A, 1216, 503509.CrossRefGoogle ScholarPubMed
Tombácz, E. & Szekeres, M. (2004) Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27, 7594.CrossRefGoogle Scholar
Verwey, F.J.W. & Overbeek, J.T.G., editors (1948) Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam, The Netherlands, 205 pp.Google Scholar
Wagener, P., Schwenke, A. & Barcikowski, S. (2012) How citrate ligands affect nanoparticle adsorption to microparticle supports. Langmuir, 28, 61326140.CrossRefGoogle ScholarPubMed
Wang, H.T., Adeleye, A.S., Huang, Y.X., Li, F.T. & Keller, A.A. (2015a) Heteroaggregation of nanoparticles with biocolloids and geocolloids. Advances in Colloid and Interface Science, 226, 2436.CrossRefGoogle ScholarPubMed
Wang, H.T., Dong, Y.N., Zhu, M., Li, X., Keller, A.A., Wang, T. & Li, F.T. (2015b) Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Research, 80, 130138.CrossRefGoogle ScholarPubMed
Wang, Z.Y., Cao, J.J., Lin, Z.X. & Wu, Z.Q. (2016) Characteristics of soil particles in the Xiaohulishan deposit, Inner Mongolia, China. Journal of Geochemical Exploration, 169, 3042.CrossRefGoogle Scholar
Wang, Y.L., Yang, K., Chefetz, B., Xing, B.S. & Lin, D.H. (2019) The pH and concentration dependent interfacial interaction and heteroaggregation between nanoparticulate zero-valent iron and clay mineral particles. Environmental Science – Nano, 6, 21292140.CrossRefGoogle Scholar
Wang, X., Peng, K.Q., Hu, Y., Zhang, F.Q., Hu, B., Li, L. et al. (2014) Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Letters, 14, 1823.CrossRefGoogle ScholarPubMed
Wang, J.Y., Zhao, X.L., Wu, F.C., Tang, Z., Zhao, T.H., Niu, L. et al. (2021) Impact of montmorillonite clay on the homo- and heteroaggregation of titanium dioxide nanoparticles (nTiO2) in synthetic and natural waters. Science of the Total Environment, 784, 147019.10.1016/j.scitotenv.2021.147019CrossRefGoogle ScholarPubMed
Ward, D.B. & Brady, P.V. (1998) Effect of Al and organic acids on the surface chemistry of kaolinite. Clays and Clay Minerals, 46, 453465.CrossRefGoogle Scholar
Wierchowiec, J., Mikulski, S.Z. & Zieliński, K. (2021) Supergene gold mineralization from exploited placer deposits at Dziwiszów in the Sudetes (NE Bohemian Massif, SW Poland). Ore Geology Reviews, 131, 104049.CrossRefGoogle Scholar
Yang, Z., Yan, H., Yang, H., Li, H., Li, A. & Cheng, R. (2013) Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water. Water Research, 47, 30373046.CrossRefGoogle ScholarPubMed
Yecheskel, Y., Dror, I. & Berkowitz, B. (2019) Effect of phosphate, sulfate, arsenate, and pyrite on surface transformations and chemical retention of gold nanoparticles (Au-NPs) in partially saturated soil columns. Environmental Science & Technology, 53, 1307113080.CrossRefGoogle ScholarPubMed
Yu, S.J., Liu, J.F., Yin, Y.G. & Shen, M.H. (2018) Interactions between engineered nanoparticles and dissolved organic matter: a review on mechanisms and environmental effects. Journal of Environmental Sciences, 63, 198217.10.1016/j.jes.2017.06.021CrossRefGoogle ScholarPubMed
Yu, W.B., Xu, H.F., Roden, E.E. & Wan, Q. (2019) Efficient adsorption of iodide from water by chrysotile bundles with wedge-shaped nanopores. Applied Clay Science, 183, 105331.CrossRefGoogle Scholar
Yu, W.B., Xu, H.F., Tan, D.Y., Fang, Y.H., Roden, E.E. & Wan, Q. (2020) Adsorption of iodate on nanosized tubular halloysite. Applied Clay Science, 184, 105407.CrossRefGoogle Scholar
Zhang, B.M., Han, Z.X., Wang, X.Q., Liu, H.L., Wu, H. & Feng, H. (2019) Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and their significance. Minerals, 9, 414.CrossRefGoogle Scholar
Zhao, J., Liu, F.F., Wang, Z.Y., Cao, X.S. & Xing, B.S. (2015) Heteroaggregation of graphene oxide with minerals in aqueous phase. Environmental Science & Technology, 49, 28492857.CrossRefGoogle ScholarPubMed
Zhou, D.X., Abdel-Fattah, A.I. & Keller, A.A. (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environmental Science & Technology, 46, 75207526.CrossRefGoogle ScholarPubMed
Zhou, H.Y., Sun, X.M., Cook, N.J., Lin, H., Fu, Y., Zhong, R.C. & Brugger, J. (2017) Nano- to micron-scale particulate gold hosted by magnetite: a product of gold scavenging by bismuth melts. Economic Geology, 112, 9931010.CrossRefGoogle Scholar
Zialame, A., Jamshidi-Zanjani, A. & Darban, A.K. (2021) Stabilized magnetite nanoparticles for the remediation of arsenic contaminated soil. Journal of Environmental Chemical Engineering, 9, 104821.10.1016/j.jece.2020.104821CrossRefGoogle Scholar
Supplementary material: File

Zeng et al. supplementary material
Download undefined(File)
File 1.3 MB