Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-26T15:41:18.415Z Has data issue: false hasContentIssue false

Study of intermediate stages in the kaolin→metakaolin transformation

Published online by Cambridge University Press:  14 March 2018

M. C. Gastuche
Affiliation:
Laboratoire des Collöides (INEAC) et de Chimie Minérale, Université de Louvain, Belgium
F. Toussaint
Affiliation:
Laboratoire des Collöides (INEAC) et de Chimie Minérale, Université de Louvain, Belgium
J. J. Fripiat
Affiliation:
Laboratoire des Collöides (INEAC) et de Chimie Minérale, Université de Louvain, Belgium
R. Touilleaux
Affiliation:
Laboratoire de Chimie Physique de l'Institut de Chimie, Université de Louvain, Belgium
M. van Meersche
Affiliation:
Laboratoire de Chimie Physique de l'Institut de Chimie, Université de Louvain, Belgium
Get access

Abstract

Some characteristics of the kaolin→metakaolin reaction have been studied by applying nuclear magnetic resonance, X-ray fluorescence, and acid dissolution techniques to samples at intermediate stages of dehydroxylation. Nuclear magnetic resonance spectra enabled the average distance between hydroxyl groups to be computed, while X-ray fluorescence provided information on changes in the co-ordination number of aluminium and acid dissolution demonstrated the reduction in cohesion between individual layers during dehydroxylation. The last technique appears to be useful in studying the development of new solid phases. The main conclusions are that the reaction proceeds in a stepwise manner by complete removal of constitutional water from octahedral sheets and not by the growth of randomly distributed nuclei, that six-fold coordinated aluminium is gradually transformed into four-fold coordinated aluminium, and that the internal surface becomes progressively accessible to the acid reagent as dehydroxylation proceeds. The ‘ring structure’ of the silica layer remains.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G. W., and. Hunter, K., 1955. Miner. Mag., 30, 274.Google Scholar
Brindley, G. W., and Nakahira, M., 1958. Miner. Mag., 31, 781.Google Scholar
Brindley, G. W., and Nakahira, M., 1959. J. Amer. ceram. Soc., 42, 311.Google Scholar
De Kimpe, C., Gastuche, M. C., and Brindi.EY, G. W., 1961. Amer. Min., 46. 1370.Google Scholar
Fripiat, J. J., and Totlssaint, F., 1963. J. phys. Chem., 67, 30.CrossRefGoogle Scholar
Gastuche, M. C., Delmon, B., and Vielvove, L., 1960. Bull. Soc. Chim. Fr.. p. 60.Google Scholar
Le Chatelier, H., 1887. Bull. Soc. franç. Minér., 10, 208.Google Scholar
Miller, J. G., 1961. J. phys. Chem., 65, 800.Google Scholar
Neumann, B., and Kobzr, S., 1927. Z. angew. Chem., 40, 337.CrossRefGoogle Scholar
Roy, R., Roy, D. M., and Francis, E. E., 1955. J. Ame.r. ceram Soc, 38, 198.Google Scholar
Stubican, V., 1959. Miner. Mag., 32, 38.Google Scholar
Toussaint, F., Fripiat, J. J., and Gastuche, M. C., 1963. J. phys. Chem., 67, 26.Google Scholar
Tscheischwili, L., Bussem, W., and Weyi, W., 1939. Ber dtseh. keram. Ges., 20, 249.Google Scholar
Van Vleck, J. H., 1948. Phys. Rev., 74, 1168.Google Scholar
White, E. W., Mckinstry, H. A., and Bates, T. F., 1958. Paper read at 7th Amer. Conf. Ind. Appl. X-ray Analysis, University of Denver Colorado, U.S.A. Google Scholar