Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T07:40:26.463Z Has data issue: false hasContentIssue false

Early signs that predict later haemodynamically significant patent ductus arteriosus

Published online by Cambridge University Press:  31 March 2015

Defne Engür*
Affiliation:
Department of Neonatology, Adnan Menderes University, Aydın, Turkey
Murat Deveci
Affiliation:
Department of Pediatric Cardiology, Department of Pediatrics, Adnan Menderes University, Aydın, Turkey
Münevver K. Türkmen
Affiliation:
Department of Neonatology, Adnan Menderes University, Aydın, Turkey
*
Correspondence to: Dr D. Engür, Adnan Menderes University Department of Neonatology, Aytepe Mevki, 32100, Aydın, Turkey. Tel: +90 256 444 12 56; Fax: +90 256 214 40 86; E-mail: defneka@hotmail.com

Abstract

Objective

Our aim was to determine the optimal cut-off values, sensitivity, specificity, and diagnostic power of 12 echocardiographic parameters on the second day of life to predict subsequent ductal patency.

Methods

We evaluated preterm infants, born at ⩽32 weeks of gestation, starting on their second day of life, and they were evaluated every other day until ductal closure or until there were clinical signs of re-opening. We measured transductal diameter; pulmonary arterial diastolic flow; retrograde aortic diastolic flow; pulsatility index of the left pulmonary artery and descending aorta; left atrium and ventricle/aortic root ratio; left ventricular output; left ventricular flow velocity time integral; mitral early/late diastolic flow; and superior caval vein diameter and flow as well as performed receiver operating curve analysis.

Results

Transductal diameter (>1.5 mm); pulmonary arterial diastolic flow (>25.6 cm/second); presence of retrograde aortic diastolic flow; ductal diameter by body weight (>1.07 mm/kg); left pulmonary arterial pulsatility index (⩽0.71); and left ventricle to aortic root ratio (>2.2) displayed high sensitivity and specificity (p<0.0001; area under the curve>0.9). Parameters with moderate sensitivity and specificity were as follows: left atrial to aortic root ratio; left ventricular output; left ventricular flow velocity time integral; and mitral early/late diastolic flow ratio (p<0.05; area under the curve 0.7–0.88). Descending aortic pulsatility index and superior caval vein diameter and flow (p>0.05) had low diagnostic value.

Conclusion

Left pulmonary arterial pulsatility index, left ventricle/aortic root ratio, and ductal diameter by body weight are useful adjuncts offering a broader outlook for predicting ductal patency.

Type
Original Articles
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hamrick, SE, Hansmann, G. Patent ductus arteriosus of the preterm infant. Pediatrics 2010; 125: 10201030.CrossRefGoogle ScholarPubMed
2. Sehgal, A, McNamara, PJ. The ductus arteriosus: a refined approach. Semin Perinatol 2012; 36: 105113.CrossRefGoogle ScholarPubMed
3. Clyman, RI, Couto, J, Murphy, GM. Patent ductus arteriosus: are current neonatal treatment options better or worse than no treatment at all? Semin Perinatol 2012; 36: 123129.CrossRefGoogle ScholarPubMed
4. Benitz, WE. Patent ductus arteriosus: to treat or not to treat? Arch Dis Child Fetal Neonatal Ed 2012; 97: 8082.CrossRefGoogle ScholarPubMed
5. Chawla, D. Patent ductus arteriosus: looking for the right approach of management. Indian Pediatr 2012; 49: 611612.CrossRefGoogle ScholarPubMed
6. El-Khuffash, A, Mertens, L. Early treatment of the patent ductus arteriosus: do we know what we are doing? Pediatr Crit Care Med 2012; 13: 363364.CrossRefGoogle ScholarPubMed
7. Sehgal, A. Haemodynamically unstable preterm infant: an unresolved management conundrum. Eur J Pediatr 2011; 170: 12371245.CrossRefGoogle ScholarPubMed
8. Lai, LS, McCrindle, BW. Variation in the diagnosis and management of patent ductus arteriosus in premature infants. Pediatr Child Health 1998; 3: 405410.CrossRefGoogle ScholarPubMed
9. Koch, J, Hensley, G, Roy, L, Brown, S, Ramaciotti, C, Rosenfeld, CR. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less. Pediatrics 2006; 117: 11131121.CrossRefGoogle ScholarPubMed
10. Benitz, WE. Treatment of persistent patent ductus arteriosus in preterm infants: time to accept the null hypothesis? J Perinatol 2010; 30: 241252.CrossRefGoogle ScholarPubMed
11. Bose, CL, Laughon, MM. Patent ductus arteriosus: lack of evidence for common treatments. Arch Dis Child Fetal Neonatal Ed 2007; 92: 498502.CrossRefGoogle ScholarPubMed
12. Laughon, MM, Simmons, MA, Bose, CL. Patency of the ductus arteriosus in the premature infant: is it pathologic? Should it be treated? Curr Opin Pediatr 2004; 16: 146151.CrossRefGoogle ScholarPubMed
13. Evans, NJ, Kluckow, M. Early significant ductal shunting and intraventricular haemorrhage in ventilated preterm infants. Arch Dis Child 1996; 75: 183186.CrossRefGoogle Scholar
14. Kluckow, M, Evans, NJ. High pulmonary blood flow, the duct and pulmonary haemorrhage. J Pediatr 2000; 137: 6872.CrossRefGoogle Scholar
15. Noori, S, McCoy, M, Friedlich, P, et al. Failure of ductus arteriosus closure is associated with increased mortality in preterm infants. Pediatrics 2009; 123: 138144.CrossRefGoogle ScholarPubMed
16. Pezzati, M, Vangi, V, Biagiotti, R, Bertini, G, Cianciulli, D, Rubaltelli, FF. Effects of indomethacin and ibuprofen on mesenteric and renal blood flow in preterm infants with patent ductus arteriosus. J Pediatr 1999; 135: 733738.CrossRefGoogle ScholarPubMed
17. Sehgal, A, Ramsden, CA, McNamara, PJ. Indomethacin impairs coronary perfusion in infants with hemodynamically significant ductus arteriosus. Neonatology 2012; 101: 120127.CrossRefGoogle ScholarPubMed
18. Patel, J, Roberts, I, Azzopardi, D, Hamilton, P, Edwards, AD. Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus. Pediatr Res 2000; 47: 3642.CrossRefGoogle ScholarPubMed
19. Abdel-Hady, H, Nasef, N, Shabaan, AE, Nour, I. Patent ductus arteriosus in preterm infants: do we have the right answers? Biomed Res Int 2013; 2013: 676192.CrossRefGoogle ScholarPubMed
20. Evans, N. Echocardiographic assessment of the patent ductus arteriosus in the preterm infant. In Poets CF, Franz A, Koehne P (eds), Controversies Around Treatment of the Open Duct. Springer-Verlag, Berlin-Heidelberg, 2011, pp 3754.CrossRefGoogle Scholar
21. De Waal, KA, Zonnenberg, I. The definition of a hemodynamic significant duct in randomized controlled trials: a systematic literature review. Acta Paediatr 2012; 101: 247251.Google Scholar
22. McNamara, PJ, Sehgal, A. Towards rational management of the patent ductus arteriosus: the need for disease staging. Arch Dis Child Fetal Neonatal Ed 2007; 92: 424427.CrossRefGoogle ScholarPubMed
23. Sinha, B. Controversies in management of patent ductus arterious in the preterm infant. J Pulmon Resp Med 2013; S13: 007.Google Scholar
24. Polin, RA. Committee on Fetus and Newborn. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics 2012; 129: 10061015.CrossRefGoogle ScholarPubMed
25. Cayabyab, R, McLean, CW, Seri, I. Definition of hypotension and assessment of hemodynamics in the preterm neonate. J Perinatol 2009; 29: 5862.CrossRefGoogle ScholarPubMed
26. Kluckow, M, Evans, N. Early echocardiographic prediction of symptomatic patent ductus arteriosus in preterm infants undergoing mechanical ventilation. J Pediatr 1995; 127: 774779.CrossRefGoogle ScholarPubMed
27. Evans, N, Iyer, P. Assessment of ductus arteriosus shunt in preterm infants requiring ventilation: effect of interatrial shunt. J Pediatr 1994; 125: 778785.CrossRefGoogle Scholar
28. El Hajjar, M, Vaksmann, G, Rakza, T, Kongolo, G, Storme, L. Severity of the ductal shunt: a comparison of different markers. Arch Dis Child Fetal Neonatal Ed 2005; 90: 419422.CrossRefGoogle ScholarPubMed
29. Suzmura, H, Nitta, A, Tanaka, O. Diastolic flow velocity of left pulmonary artery of patent ductus arteriosus in preterm infants. Pediatr Int 2001; 43: 146151.CrossRefGoogle Scholar
30. Schmitz, L, Stiller, B, Koch, H, et al. Diastolic left ventricular function in preterm infants with a patent ductus arteriosus: a serial Doppler echocardiography study. Early Hum Dev 2004; 76: 91100.CrossRefGoogle ScholarPubMed
31. Kluckow, M, Evans, N. Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed 2000; 82: 182187.CrossRefGoogle ScholarPubMed
32. Sehgal, A, McNamara, PJ. Does echocardiography facilitate determination of hemodynamic significance attributable to the ductus arteriosus? Eur J Pediatr 2009; 168: 907914.CrossRefGoogle Scholar
33. Groves, AM, Kuschel, CA, Knight, DB, Skinner, JR. Echocardiographic assessment of blood flow volume in the superior vena cava and descending aorta in the newborn infant. Arch Dis Child Fetal Neonatal Ed 2008; 93: 2428.CrossRefGoogle ScholarPubMed
34. Freeman-Ladd, M, Cohen, JB, Carver, JD, et al. The hemodynamic effects of neonatal patent ductus arteriosus shunting on superior mesenteric artery blood flow. J Perinatol 2005; 25: 459462.CrossRefGoogle ScholarPubMed
35. Moons, KG, de Groot, JA, Linnet, K, Reitsma, JB, Bossuyt, PM. Quantifying the added value of a diagnostic test or marker. Clin Chem 2012; 58: 14081417.CrossRefGoogle ScholarPubMed
36. Obuchowski, NA, Lieber, ML, Wians, FH, Jr.. ROC curves in clinical chemistry: uses, misuses, and possible solutions. Clin Chem 2004; 50: 11181125.CrossRefGoogle ScholarPubMed
37. Johnson, GL, Breart, GL, Gewitz, MH, et al. Echocardiographic characteristics of premature infants with patient ductus arteriosus. Pediatrics 1983; 72: 864871.CrossRefGoogle ScholarPubMed