Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T07:31:41.464Z Has data issue: false hasContentIssue false

Brainstem auditory-evoked responses among children afflicted by severely hypoxic CHD

Published online by Cambridge University Press:  05 September 2022

F. Bernardo Pliego-Rivero
Affiliation:
Laboratory of Neurochemistry, Universidad Autonoma del Estado de Mexico, Toluca, Mexico
Keila Isaac-Olivé
Affiliation:
Laboratory of Theragnostics Research, Universidad Autonoma del Estado de Mexico, Toluca, Mexico
Gloria A. Otero*
Affiliation:
Laboratory of Neurophysiology, Universidad Autonoma del Estado de Mexico, Toluca, Mexico
*
Author for correspondence: Dr. Gloria A. Otero, Universidad Autonoma del Estado de Mexico, Toluca, 50000, Mexico. Tel: + 52 722 350 8866. Email: oeog45@gmail.com

Abstract

Main aim:

To electrophysiologically determine the impact of moderate to severe chronic hypoxia (H) resulting from a wide array of CHD (HCHD) conditions on the integrity of brainstem function.

Materials and methods:

Applying brainstem auditory-evoked response methodology, 30 chronically afflicted HCHD patients, who already had undergone heart surgery, were compared to 28 healthy control children (1–15 yo) matched by age, gender and socioeconomic condition. Blood oxygen saturation was clinically determined and again immediately before brainstem auditory-evoked response testing.

Results:

Among HCHD children, auditory wave latencies (I, III and V) were significantly longer (medians: I, 2.02 ms; III, 4.12 ms, and; V, 6.30 ms) compared to control (medians: I, 1.67ms; III, 3.72 ms, and; V, 5.65 ms), as well as interpeak intervals (HCHD medians: I-V, 4.25 ms, and; III-V, 2.25ms; control medians: I-V, 3.90 ms and, III-V, 1.80 ms) without significant differences in wave amplitudes between groups. A statistically significant and inverse correlation between average blood oxygen saturation of each group (control, 94%; HCHD, 78%) and their respective wave latencies and interpeak intervals was found.

Conclusions:

As determined by brainstem auditory-evoked responses, young HCHD patients manifestly show severely altered neuronal conductivity in the auditory pathway strongly correlated with their hypoxic condition. These observations are strongly supported by different brainstem neurological and image studies showing that alterations, either in microstructure or function, result from the condition of chronic hypoxia in CHD. The non-altered wave amplitudes are indicative of relatively well-preserved neuronal relay nuclei.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Marelli, A, Miller, SP, Marino, BS, Jefferson, AL, Newburger, JW. Brain in congenital heart disease across the lifespan: The cumulative burden of injury. Circulation 2016; 133: 19511962. https//doi:10.1161/CIRCULATIONAHA.115.019881.CrossRefGoogle ScholarPubMed
Bregman, S, Frishman, WH. Impact of improved survival in congenital heart disease on incidence of disease. Cardiol Rev 2018; 26: 8285. https//doi:10.1097/CRD.0000000000000178.CrossRefGoogle ScholarPubMed
Bird, GL, Jeffries, HE, Licht, DJ, et al. Neurological complications associated with the treatment of patients with congenital cardiac disease: consensus definitions from the Multi-Societal Database Committee for Pediatric and Congenital Heart Disease. Cardiol Young 2008; 18 (Suppl 2): 234239. https//doi:10.1017/S1047951108002977.CrossRefGoogle ScholarPubMed
Owen, M, Shevell, M, Majnemer, A, Limperopoulos, C. Abnormal brain structure and function in newborns with complex congenital heart defects before open heart surgery a review of the evidence. J Child Neurol 2011; 26: 743755. https//doi:10.1177/0883073811402073.CrossRefGoogle ScholarPubMed
Dimitropoulos, A, McQuillen, PS, Sethi, V, et al. Brain injury and development in newborns with critical congenital heart disease. Neurology 2013; 81: 241248. https//10.1212/WNL.0b013e31829bfdcf.10.1212/WNL.0b013e31829bfdcfCrossRefGoogle ScholarPubMed
Sun, L, Macgowan, CK, Sled, JG, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 2015; 131: 13131323. https//doi:10.1161/CIRCULATIONAHA.114.013051.CrossRefGoogle ScholarPubMed
Claessens, NH, Moeskops, P, Buchmann, A, et al. Delayed cortical gray matter development in neonates with severe congenital heart disease. Pediatr Res 2016; 80: 668674. https//doi:10.1038/pr.2016.145.CrossRefGoogle ScholarPubMed
Karmacharya, SB, Gagoski, L, Ning, R, et al. Advanced diffusion imaging for assessing normal white matter development in neonates and characterizing aberrant development in congenital heart disease. Neuroimage Clin 2018; 19: 360373. https//doi:10.1016/j.nicl.2018.04.032.CrossRefGoogle ScholarPubMed
Ortineau, CM, Mangin-Heimos, K, Moen, J, et al. Prenatal to postnatal trajectory of brain growth in complex congenital heart disease Neuroimage Clin 2018; 20: 913922. https//doi:10.1016/j.nicl.2018.09.029.CrossRefGoogle Scholar
Limperopoulos, C, Tworetzky, W, McElhinney, DB, et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 2010; 121: 2633.10.1161/CIRCULATIONAHA.109.865568CrossRefGoogle ScholarPubMed
Raman, L, Kong, X, Gilley, JA, Kernie, SG. Chronic hypoxia impairs murine hippocampal development and depletes the postnatal progenitor pool by attenuating mTOR signaling. Pediatr Res 2011; 70: 159165. https//doi:10.1203/PDR.0b013e3182218622.CrossRefGoogle Scholar
Esquivel-Hernández, FJ, Pliego-Rivero, F, Mendieta-Alcántara, GG, Ricardo-Garcell, J., Otero-Ojeda, GA. Alteraciones electroencefalográficas y del neurodesarrollo en niños portadores de cardiopatías congénitas severas. Estudio preliminar. Gac Med Mex 2013; 149: 605612.Google Scholar
Esquivel-Hernández, FJ, Mendieta-Alcántara, GG, Pliego-Rivero, FB, Otero-Ojeda, GA Electroencephalographic and neurodevelopmental disorders in severe congenital heart disease: A follow-up study. Gac Med Mex 2015; 151: 588598.Google ScholarPubMed
Rudolph, AM. Impaired cerebral development in fetuses with congenital cardiovascular malformations: Is it the result of inadequate glucose supply?. Pediatr Res 2016; 80: 172177. https//doi:10.1038/pr.2016.65.CrossRefGoogle ScholarPubMed
Brossard-Racine, M, du Plessis, A, Vezina, G, et al. Brain injury in neonates with complex congenital heart disease: What is the predictive value of MRI in the fetal period? AJNR Am J Neuroradiol 2016; 37: 13381346. https//doi:10.3174/ajnr.A4716.CrossRefGoogle ScholarPubMed
Khalil, A, Bennet, S, Thilaganathan, B, Paladini, D, Griffiths, P, Carvalho, JS. Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: a systematic review. Ultrasound Obstet Gynecol 2016; 48: 296307. https//doi:10.1002/uog.15932.CrossRefGoogle ScholarPubMed
Peyvandi, SV, De Santiago, E, Chakkarapani, V, et al. Association of prenatal diagnosis of critical congenital heart disease with postnatal brain development and the risk of brain Injury. JAMA Pediatr 2016; 170: e154450. https//doi:10.1001/jamapediatrics.2015.4450.CrossRefGoogle ScholarPubMed
Licht, DJ, Agner, S, Montenegro, LM, Nicolson, SC, Silvestre, D, Tabbutt, S. Preoperative MRI abnormalities are common in full-term infants with severe CHD and resemble lesions in pre-term infants. Abstracts of the 10th International Child Neurology Congress, June 11–16, 2006, Montreal, Canada. Neuropediatrics 2006; 37 (Suppl 1) S1–183.Google Scholar
Kinney, HC, Panigrahy, A, Newburger, JW, Jonas, RA, Sleeper, LA. Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery. Acta Neuropathol 2005; 110: 563578.10.1007/s00401-005-1077-6CrossRefGoogle ScholarPubMed
Back, SA, Luo, NL, Borenstein, NS, Levine, JM, Volpe, JJ, Kinney, HC. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neuroscience 2001; 21: 13021312.10.1523/JNEUROSCI.21-04-01302.2001CrossRefGoogle ScholarPubMed
Galli, KK, Zimmerman, RA, Jarvick, GP, et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 2004; 127: 692704.10.1016/j.jtcvs.2003.09.053CrossRefGoogle ScholarPubMed
Petrova, LD. Brainstem auditory evoked potential. Am J Electroneurodiagnostic Technol 2009; 49: 317332.10.1080/1086508X.2009.11079735CrossRefGoogle Scholar
Kussman, BD, Laussen, PC, Benni, PB, McGowan, FX Jr, McElhinney, DB. Cerebral oxygen saturation in children with congenital heart disease and chronic hypoxemia. Anesth Analg 2017; 125: 234240. https//doi:10.1213/ANE.0000000000002073.CrossRefGoogle ScholarPubMed
González, G, Pliego, FB, Rodríguez, M., Mendieta, G., Otero, GA. Assessment of cognitive performance among Mexican children and adolescents afflicted by simple to complex congenital heart diseases. Preliminary study. Progr Pediatr Cardiol 2018; 48: 9397.10.1016/j.ppedcard.2018.02.004CrossRefGoogle Scholar
Lim, JM, Kingdom, T, Saini, B, et al. Cerebral oxygen delivery is reduced in newborns with congenital heart disease. J Thorac Cardiovasc Surg 2016; 152: 10951103. https//doi:10.1016/j.jtcvs.2016.05.027.CrossRefGoogle ScholarPubMed
Kim, SE, Turkington, K, Kushmerick, C, Kim, JH. Central dysmyelination reduces the temporal fidelity of synaptic transmission and the reliability of postsynaptic firing during high-frequency stimulation J Neurophysiol 2013; 110: 16211630. doi: 10.1152/jn.00117.2013.CrossRefGoogle ScholarPubMed
Guo, T, Duerden, EG, Adams, E, et al. Quantitative assessment of white matter injury in preterm neonates: association with outcomes. Neurology 2017; 88: 614622. https//010.1212/WNL.0000000000003606.10.1212/WNL.0000000000003606CrossRefGoogle ScholarPubMed
Romero, G. Auditory brainstem evoked potentials as a clinical evaluation tool for children with hypoxic-ischemic encephalopathy. Abstracts of the 5th Latin American Congress of Clinical Neurophysiology/Clinical Neurophysiology 119 2008, KN12.10.1016/S1388-2457(08)60571-4CrossRefGoogle Scholar
Jiang, ZD, Liu, XY, Shi, BP, Lin, L, Bu, CF Wilkinson, AR. Brainstem auditory outcomes and correlation with neurodevelopment after perinatal asphyxia. Pediatr Neurol 2008; 39: 189195.10.1016/j.pediatrneurol.2008.06.013CrossRefGoogle ScholarPubMed
Lauffer, H, Wenzel, D. Brainstem acoustic evoked responses: maturational aspects from cochlea to midbrain. Neuropediatrics 1990; 21: 5961.10.1055/s-2008-1071461CrossRefGoogle ScholarPubMed
Liu, X, Li, R, Chen, S, Sang, Y, Zhao, J. Screening of inherited metabolic abnormalities in 56 children with intractable epilepsy. Exp Ther Med 2016; 12: 135140. https//doi:10.3892/etm.2016.3260.CrossRefGoogle ScholarPubMed
Sushil, MI, Muneshwar, JN, Afroz, S. To study brain stem auditory evoked potential in patients with type 2 diabetes mellitus- A cross-sectional comparative study. J Clin Diagn Res 2016; 10: CC01CC04. https//doi:10.7860/JCDR/2016/19336.8791.Google ScholarPubMed
Leocani, L, Rovaris, M, Boneschi, FM, et al. Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 2006; 77: 10301035. https//doi:10.1136/jnnp.2005.086280.CrossRefGoogle ScholarPubMed
Dambska, M, Lauer-Kamionowska, M. Myelination as a parameter of normal and retarded brain maturation. Brain Dev 1990; 12: 214220.10.1016/S0387-7604(12)80328-7CrossRefGoogle ScholarPubMed
Saab, AS, Tzvetavona, ID, Trevisiol, A, et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 2016; 91: 119132. https//doi:10.1016/j.neuron.2016.05.016.CrossRefGoogle ScholarPubMed
Lee, Y, Morrison, BM, Li, Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012; 487: 443448. https//doi:10.1038/nature11314.CrossRefGoogle ScholarPubMed
Fünfschilling, U, Supplie, .M, Mahad, D., et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012; 485: 517521. https//doi:10.1038/nature11007.CrossRefGoogle ScholarPubMed
Okutan, V, Demirkaya, S, Lenk, MK, Hamamcioğlu, K, Unay, B, Vural, O, Gökçay, E. Auditory brainstem responses in children with congenital heart disease. Pediatr Int 1999; 41: 620623.10.1046/j.1442-200x.1999.01142.xCrossRefGoogle ScholarPubMed
Sunaga, Y, Sone, K, Nagashima, K, Kuroume, T. Auditory brainstem responses in congenital heart disease. Pediatr Neurol 1992; 8: 437440.10.1016/0887-8994(92)90005-JCrossRefGoogle ScholarPubMed
Altman, J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer J Comp Neurol 1972, 145: 353397.10.1002/cne.901450305CrossRefGoogle ScholarPubMed
WMA. World Medical Association Declaration of Helsinki, “Ethical principles for medical research involving human subjects” (2013), available at (https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/).Google Scholar