Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T12:00:06.235Z Has data issue: false hasContentIssue false

Feeding infants with complex congenital heart disease: a modified Delphi survey to examine potential research and practice gaps

Published online by Cambridge University Press:  11 December 2020

Kristin M. Elgersma*
School of Nursing, University of Minnesota, Minneapolis, MN, USA
Anne Chevalier McKechnie
School of Nursing, University of Minnesota, Minneapolis, MN, USA
Tipper Gallagher
School of Nursing, University of Minnesota, Minneapolis, MN, USA
Anna L. Trebilcock
School of Nursing, University of Minnesota, Minneapolis, MN, USA
Karen F. Pridham
School of Nursing, University of Wisconsin, Madison, WI, USA
Diane L. Spatz
School of Nursing, Lactation Program, University of Pennsylvania and the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Author for correspondence: K. M. Elgersma, DM, MN, MM, RN, University of Minnesota, School of Nursing, 308 SE Harvard St, Minneapolis, MN55455, USA. Tel: +1 612-624-6491; Fax: +1 612-624-3174. E-mail:



To determine clinical consensus and non-consensus in regard to evidence-based statements about feeding infants with complex CHD, with a focus on human milk. Areas of non-consensus may indicate discrepancies between research findings and practice, with consequent variation in feeding management.

Materials and Methods:

A modified Delphi survey validated key feeding topics (round 1), and determined consensus on evidence-based statements (rounds 2 and 3). Patients (n=25) were an interdisciplinary group of clinical experts from across the United States of America. Descriptive analysis used SPSS Statistics (Version 26.0). Thematic analysis of qualitative data provided context for quantitative data.


Round 1 generated 5 key topics (human milk, developing oral feeding skills, clinical feeding practice, growth failure, and parental concern about feeding) and 206 evidence-based statements. The final results included 110 (53.4%) statements of consensus and 96 (46.6%) statements of non-consensus. The 10 statements of greatest consensus strongly supported human milk as the preferred nutrition for infants with complex CHD. Areas of non-consensus included the adequacy of human milk to support growth, need for fortification, safety, and feasibility of direct breastfeeding, issues related to tube feeding, and prevention and treatment of growth failure.


The results demonstrate clinical consensus about the importance of human milk, but reveal a need for best practices in managing a human milk diet for infants with complex CHD. Areas of non-consensus may lead to clinical practice variation. A sensitive approach to these topics is needed to support family caregivers in navigating feeding concerns.

Original Article
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Pace, ND, Oster, ME, Forestieri, NE, Enright, D, Knight, J, Meyer, RE. Sociodemographic factors and survival of infants with congenital heart defects. Pediatrics 2018; 142: e20180302. doi: 10.1542/peds.2018-0302 CrossRefGoogle ScholarPubMed
Oster, ME, Lee, KA, Honein, MA, Riehle-Colarusso, T, Shin, M, Correa, A. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 2013; 131: e1502e1508. doi: 10.1542/peds.2012-3435 CrossRefGoogle ScholarPubMed
Gordon, BM, Rodriguez, S, Lee, M, Chang, R-K. Decreasing number of deaths of infants with hypoplastic left heart syndrome. J Pediatr 2008; 153: 354358. doi: 10.1016/j.jpeds.2008.03.009 CrossRefGoogle ScholarPubMed
Medoff-Cooper, B, Ravishankar, C. Nutrition and growth in congenital heart disease: a challenge in children. Curr Opin Cardiol 2013; 28: 122129. doi: 10.1097/HCO.0b013e32835dd005 CrossRefGoogle ScholarPubMed
Floh, AA, Slicker, J, Schwartz, SM. Nutrition and mesenteric issues in pediatric cardiac critical care. Pediatr Crit Care Med 2016; 17 (8 Suppl 1): S243S249. doi: 10.1097/PCC.0000000000000801 CrossRefGoogle ScholarPubMed
Mangili, G, Garzoli, E, Sadou, Y. Feeding dysfunctions and failure to thrive in neonates with congenital heart diseases. Pediatr Med Chir 2018; 40. doi: 10.4081/pmc.2018.196 Google ScholarPubMed
Gaynor, JW, Stopp, C, Wypij, D, et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics 2015; 135: 816825. doi: 10.1542/peds.2014-3825 CrossRefGoogle ScholarPubMed
Mitting, R, Marino, L, Macrae, D, Shastri, N, Meyer, R, Pathan, N. Nutritional status and clinical outcome in postterm neonates undergoing surgery for congenital heart disease. Pediatr Crit Care Med 2015; 16: 448452. doi: 10.1097/PCC.0000000000000402 CrossRefGoogle ScholarPubMed
Radman, M, Mack, R, Barnoya, J, et al. The effect of preoperative nutritional status on postoperative outcomes in children undergoing surgery for congenital heart defects in San Francisco (UCSF) and Guatemala City (UNICAR). J Thorac Cardiovasc Surg 2014; 147: 442450. doi: 10.1016/j.jtcvs.2013.03.023 CrossRefGoogle Scholar
Eskedal, LT, Hagemo, PS, Seem, E, et al. Impaired weight gain predicts risk of late death after surgery for congenital heart defects. Arch Dis Child 2008; 93: 495501. doi: 10.1136/adc.2007.126219 CrossRefGoogle ScholarPubMed
Ghanayem, NS, Allen, KR, Tabbutt, S, et al. Interstage mortality after the Norwood procedure: results of the multicenter Single Ventricle Reconstruction trial. J Thorac Cardiovasc Surg 2012; 144: 896906. doi: 10.1016/j.jtcvs.2012.05.020 CrossRefGoogle ScholarPubMed
Hartman, DM, Medoff-Cooper, B. Transition to home after neonatal surgery for congenital heart disease. MCN Am J Matern Nurs 2012; 37: 95100. doi: 10.1097/NMC.0b013e318241dac1 CrossRefGoogle ScholarPubMed
Imms, C. Feeding the infant with congenital heart disease: an occupational performance challenge. Am J Occup Ther 2001; 55: 277284. doi: 10.5014/ajot.55.3.277 CrossRefGoogle ScholarPubMed
Tregay, J, Wray, J, Crowe, S, et al. Going home after infant cardiac surgery: A UK qualitative study. Arch Dis Child 2016; 101: 320325. doi: 10.1136/archdischild-2015-308827 CrossRefGoogle ScholarPubMed
Edwards, TM, Spatz, DL. An innovative model for achieving breast-feeding success in infants with complex surgical anomalies. J Perinat Neonatal Nurs 2010; 24: 246253. doi: 10.1097/JPN.0b013e3181e8d517 CrossRefGoogle ScholarPubMed
Martino, K, Wagner, M, Froh, EB, Hanlon, AL, Spatz, DL. Postdischarge breastfeeding outcomes of infants with complex anomalies that require surgery. J Obstet Gynecol Neonatal Nurs 2015; 44: 450457. doi: 10.1111/1552-6909.12568 CrossRefGoogle ScholarPubMed
Alves, E, Rodrigues, C, Fraga, S, Barros, H, Silva, S. Parents’ views on factors that help or hinder breast milk supply in neonatal care units: systematic review. Arch Dis Child 2013; 98: F511F517. doi: 10.1136/archdischild-2013-304029 CrossRefGoogle ScholarPubMed
Petit, CJ, Fraser, CD, Mattamal, R, Slesnick, TC, Cephus, CE, Ocampo, EC. The impact of a dedicated single-ventricle home-monitoring program on interstage somatic growth, interstage attrition, and 1-year survival. J Thorac Cardiovasc Surg 2011; 142: 13581366. doi: 10.1016/j.jtcvs.2011.04.043 CrossRefGoogle ScholarPubMed
Hehir, DA, Rudd, N, Slicker, J, et al. Normal interstage growth after the Norwood operation associated with interstage home monitoring. Pediatr Cardiol 2012; 33: 13151322. doi: 10.1007/s00246-012-0320-x CrossRefGoogle ScholarPubMed
Demirci, J, Caplan, E, Brozanski, B, Bogen, D. Winging it: Maternal perspectives and experiences of breastfeeding newborns with complex congenital surgical anomalies. J Perinatol 2018; 38: 708717. doi: 10.1038/s41372-018-0077-z CrossRefGoogle ScholarPubMed
Karpen, HE. Nutrition in the cardiac newborns. Clin Perinatol 2016; 43: 131145. doi: 10.1016/j.clp.2015.11.009 CrossRefGoogle ScholarPubMed
Ehrmann, DE, Mulvahill, M, Harendt, S, et al. Toward standardization of care: the feeding readiness assessment after congenital cardiac surgery. Congenit Heart Dis 2018; 13: 3137. doi: 10.1111/chd.12550 CrossRefGoogle ScholarPubMed
Davis, JA, Spatz, DL. Human milk and infants with congenital heart disease: a summary of current literature supporting the provision of human milk and breastfeeding. Adv Neonatal Care. Published online 2019: 1. doi: 10.1097/ANC.0000000000000582 CrossRefGoogle ScholarPubMed
Spatz, DL. Ten steps for promoting and protecting breastfeeding for vulnerable infants. J Perinat Neonatal Nurs 2004; 18: 385396. doi: 10.1097/00005237-200410000-00009 CrossRefGoogle ScholarPubMed
Spatz, DL. State of the science: use of human milk and breast-feeding for vulnerable infants. J Perinat Neonatal Nurs 2006; 20: 5155. doi: 10.1097/00005237-200601000-00017 CrossRefGoogle ScholarPubMed
Marino, BL, O’Brien, P, LoRe, H. Oxygen saturations during breast and bottle feedings in infants with congenital heart disease. J Pediatr Nurs 1995; 10: 360364.CrossRefGoogle ScholarPubMed
Combs, VL, Marino, BL. A comparison of growth patterns in breast and bottle-fed infants with congenital heart disease. Pediatr Nurs 1993; 19: 175179.Google ScholarPubMed
Toms, R, Jackson, KW, Dabal, RJ, Reebals, CH, Alten, JA. Preoperative trophic feeds in neonates with hypoplastic left heart syndrome. Congenit Heart Dis 2015; 10: 3642. doi: 10.1111/chd.12177 CrossRefGoogle ScholarPubMed
Cognata, A, Kataria-Hale, J, Griffiths, P, et al. Human milk use in the preoperative period is associated with a lower risk for necrotizing enterocolitis in neonates with complex congenital heart disease. J Pediatr 2019; 215: 1116.e2. doi: 10.1016/j.jpeds.2019.08.009 CrossRefGoogle ScholarPubMed
Slicker, J, Sables-Baus, S, Lambert, LM, et al. Perioperative feeding approaches in single ventricle infants: a survey of 46 centers. Congenit Heart Dis 2016; 11: 707715. doi: 10.1111/chd.12390 CrossRefGoogle ScholarPubMed
Tume, LN, Balmaks, R, da Cruz, E, et al. Enteral feeding practices in infants with congenital heart disease across European PICUs: A European Society of Pediatric and Neonatal Intensive Care survey. Pediatr Crit Care Med 2018; 19: 137144. doi: 10.1097/PCC.0000000000001412 CrossRefGoogle ScholarPubMed
Howley, LW, Kaufman, J, Wymore, E, et al. Enteral feeding in neonates with prostaglandin-dependent congenital cardiac disease: international survey on current trends and variations in practice. Cardiol Young 2012; 22: 121127. doi: 10.1017/S1047951111001016 CrossRefGoogle ScholarPubMed
Lambert, LM, Pike, NA, Medoff-Cooper, B, et al. Variation in feeding practices following the Norwood procedure. J Pediatr 2014; 164: 237242.e1. doi: 10.1016/j.jpeds.2013.09.042 CrossRefGoogle ScholarPubMed
Alten, JA, Rhodes, LA, Tabbutt, S, et al. Perioperative feeding management of neonates with CHD: Analysis of the Pediatric Cardiac Critical Care Consortium (PC4) registry. Cardiol Young 2015; 25: 15931601. doi: 10.1017/S1047951115002474 CrossRefGoogle ScholarPubMed
Ehrmann, DE, Harendt, S, Church, J, et al. Noncompliance to a postoperative algorithm using feeding readiness assessments prolonged length of stay at a pediatric heart institute. Pediatr Qual Saf 2017; 2: e042. doi: 10.1097/pq9.0000000000000042 CrossRefGoogle Scholar
Anderson, JB, Beekman, RH 3rd, Kugler, JD, et al. Use of a learning network to improve variation in interstage weight gain after the Norwood operation. Congenit Heart Dis 2014; 9: 512520. doi: 10.1111/chd.12232 CrossRefGoogle ScholarPubMed
Furlong-Dillard, JM, Miller, BJ, Sward, KA, et al. The association between feeding protocol compliance and weight gain following high-risk neonatal cardiac surgery. Cardiol Young 2019; 29: 594601. doi: 10.1017/S1047951119000222 CrossRefGoogle ScholarPubMed
Lambert, JM, Watters, NE. Breastfeeding the infant/child with a cardiac defect: an informal survey. J Hum Lact 1998; 14: 151155. doi: 10.1177/089033449801400221 CrossRefGoogle Scholar
Rowe, G, Wright, G. Expert opinions in forecasting: Role of the Delphi technique. In: Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer Academic Publishers, Norwell, MA, 2001: 125144.CrossRefGoogle Scholar
Akins, RB, Tolson, H, Cole, BR. Stability of response characteristics of a Delphi panel: application of bootstrap data expansion. BMC Med Res Methodol 2005; 5: 37. doi: 10.1186/1471-2288-5-37 CrossRefGoogle Scholar
Iqbal, S, Pipon-Young, L. The Delphi method. The Psychologist 2009; 22: 598601.Google Scholar
Miles, MB, Huberman, AM, Saldaña, J. Qualitative Data Analysis: A Methods Sourcebook. 3 rd ed. SAGE Publications, Inc, Thousand Oaks, CA, 2014.Google Scholar
Slicker, J, Hehir, DA, Horsley, M, et al. Nutrition algorithms for infants with hypoplastic left heart syndrome; birth through the first interstage period. Congenit Heart Dis 2013; 8: 89102. doi: 10.1111/j.1747-0803.2012.00705.x CrossRefGoogle ScholarPubMed
Sahu, MK, Singal, A, Menon, R, et al. Early enteral nutrition therapy in congenital cardiac repair postoperatively: a randomized, controlled pilot study. Ann Card Anaesth 2016; 19: 653661. doi: 10.4103/0971-9784.191550 CrossRefGoogle ScholarPubMed
Rosti, L, Vivaldo, T, Butera, G, Chessa, M, Carlucci, C, Giamberti, A. Postoperative nutrition of neonates undergoing heart surgery. Pediatr Medica E Chir Med Surg Pediatr 2011; 33: 236240.Google ScholarPubMed
Zyblewski, SC, Nietert, PJ, Graham, EM, Taylor, SN, Atz, AM, Wagner, CL. Randomized clinical trial of preoperative feeding to evaluate intestinal barrier function in neonates requiring cardiac surgery. J Pediatr 2015; 167: 4751.e1. doi: 10.1016/j.jpeds.2015.04.035 CrossRefGoogle ScholarPubMed
Lambert, DK, Christensen, RD, Henry, E, et al. Necrotizing enterocolitis in term neonates: Data from a multihospital health-care system. J Perinatol 2007; 27: 437443.CrossRefGoogle ScholarPubMed
El-Koofy, N, Mahmoud, AM, Fattouh, AM. Nutritional rehabilitation for children with congenital heart disease with left to right shunt. Turk J Pediatr 2017; 59: 442451. doi: 10.24953/turkjped.2017.04.011 CrossRefGoogle ScholarPubMed
Spatz, DL. Beyond BFHI: The Spatz 10-Step and breastfeeding resource nurse model to improve human milk and breastfeeding outcomes. J Perinat Neonatal Nurs 2018; 32: 164174. doi: 10.1097/JPN.0000000000000339 CrossRefGoogle ScholarPubMed
Froh, EB, Deatrick, JA, Curley, MAQ, Spatz, DL. Making meaning of pumping for mothers of infants with congenital diaphragmatic hernia. J Obstet Gynecol Neonatal Nurs 2015; 44: 439449. doi: 10.1111/1552-6909.12564 CrossRefGoogle ScholarPubMed
Meier, PP, Johnson, TJ, Patel, AL, Rossman, B. Evidence-based methods that promote human milk feeding of preterm infants. Clin Perinatol 2017; 44: 122. doi: 10.1016/j.clp.2016.11.005 CrossRefGoogle ScholarPubMed
Rendón-Macías, ME, Castañeda-Muciño, G, Cruz, JJ, Mejía-Aranguré, JM, Villasís-Keever, MA. Breastfeeding among patients with congenital malformations. Arch Med Res 2002; 33: 269275. doi: 10.1016/S0188-4409(02)00361-2 CrossRefGoogle ScholarPubMed
Tandberg, BS, Ystrom, E, Vollrath, ME, Holmstrom, H. Feeding infants with CHD with breast milk: Norwegian Mother and Child Cohort Study. Acta Paediatr Oslo Nor 1992 2010; 99: 373378. doi: 10.1111/j.1651-2227.2009.01605.x Google ScholarPubMed
Boctor, DL, Pillo-Blocka, F, McCrindle, BW. Nutrition after cardiac surgery for infants with congenital heart disease. Nutr Clin Pract 1999; 14: 111115. doi: 10.1177/088453369901400303 CrossRefGoogle Scholar
Fugate, K, Hernandez, I, Ashmeade, T, Miladinovic, B, Spatz, DL. Improving human milk and breastfeeding practices in the NICU. J Obstet Gynecol Neonatal Nurs 2015; 44: E14E15. doi: 10.1111/1552-6909.12566 CrossRefGoogle ScholarPubMed
McCrary, AW, Clabby, ML, Mahle, WT. Patient and practice factors affecting growth of infants with systemic-to-pulmonary shunt. Cardiol Young 2013; 23: 499506. doi: 10.1017/S1047951112001382 CrossRefGoogle ScholarPubMed
Spatz, DL, Schmidt, KJ, Kinzler, S. Implementation of a human milk management center. Adv Neonatal Care 2014; 14: 253261. doi: 10.1097/ANC.0000000000000084 CrossRefGoogle ScholarPubMed
Spatz, DL. Innovations in the provision of human milk and breastfeeding for infants requiring intensive care. J Obstet Gynecol Neonatal Nurs 2012; 41: 138143. doi: 10.1111/j.1552-6909.2011.01315.x CrossRefGoogle ScholarPubMed
Meier, P, Anderson, GC. Responses of small preterm infants to bottle- and breast-feeding. MCN Am J Matern Nurs 1987; 12: 97105. doi: 10.1097/00005721-198703000-00006 CrossRefGoogle ScholarPubMed
Chen, C-H, Wang, T-M, Chang, H-M, Chi, C-S. The effect of breast-and bottle-feeding on oxygen saturation and body temperature in preterm infants. J Hum Lact 2000; 16: 2127. doi: 10.1177/089033440001600105 CrossRefGoogle ScholarPubMed
Spence, K, Swinsburg, D, Griggs, J-A, Johnston, L. Infant well-being following neonatal cardiac surgery. J Clin Nurs 2011; 20: 26232632. doi: 10.1111/j.1365-2702.2011.03716.x CrossRefGoogle ScholarPubMed
Barbas, KH, Kelleher, DK. Breastfeeding success among infants with congenital heart disease. Pediatr Nurs 2004; 30: 285289.Google ScholarPubMed
Wallis, M, Harper, M. Supporting breastfeeding mothers in hospital: Part 2b. Paediatr Nurs 2007; 19: 2023.CrossRefGoogle ScholarPubMed
Medoff-Cooper, B, Naim, M, Torowicz, D, Mott, A. Feeding, growth, and nutrition in children with congenitally malformed hearts. Cardiol Young 2010; 20 (S3): 149153. doi: 10.1017/S1047951110001228 CrossRefGoogle ScholarPubMed
Steltzer, MM, Sussman-Karten, K, Kuzdeba, HB, Mott, S, Connor, JA. Creating opportunities for optimal nutritional experiences for infants with complex congenital heart disease. J Pediatr Health Care 2016; 30: 599605. doi: 10.1016/j.pedhc.2016.08.002 CrossRefGoogle ScholarPubMed
Owens, B. Breastfeeding an infant after heart transplant surgery. J Hum Lact 2002; 18: 5355.CrossRefGoogle ScholarPubMed
Torowicz, DL, Seelhorst, A, Froh, EB, Spatz, DL. Human milk and breastfeeding outcomes in infants with congenital heart disease. Breastfeed Med 2015; 10: 3137. doi: 10.1089/bfm.2014.0059 CrossRefGoogle ScholarPubMed
Gregory, C. Use of test weights for breastfeeding infants with congenital heart disease in a cardiac transitional care unit: a best practice implementation project. JBI Database Syst Rev Implement Rep 2018; 16: 22242245. doi: 10.11124/JBISRIR-2017-003759 CrossRefGoogle Scholar
Premji, SS, Chessell, L. Continuous nasogastric milk feeding versus intermittent bolus milk feeding for premature infants less than 1500 grams. Cochrane Neonatal Group, ed. Cochrane Database Syst Rev. Published online November 9, 2011. doi: 10.1002/14651858.CD001819.pub2 CrossRefGoogle Scholar
Furlong-Dillard, J, Neary, A, Marietta, J, et al. Evaluating the impact of a feeding protocol in neonates before and after biventricular cardiac surgery. Pediatr Qual Saf 2018; 3: e080. doi: 10.1097/pq9.0000000000000080 CrossRefGoogle ScholarPubMed
Taylor, AM, Cloherty, M, Alexander, J, Holloway, I, Galvin, K, Inch, S. Parental distress around supplementing breastfed babies using nasogastric tubes on the post-natal ward: a theme from an ethnographic study. Matern Child Nutr 2009; 5: 117124. doi: 10.1111/j.1740-8709.2008.00165.x CrossRefGoogle ScholarPubMed
Di Maria, MV, Glatz, AC, Ravishankar, C, et al. Supplemental tube feeding does not mitigate weight loss in infants with shunt-dependent single-ventricle physiology. Pediatr Cardiol 2013; 34: 13501356. doi: 10.1007/s00246-013-0648-x CrossRefGoogle Scholar
Williams, RV, Zak, V, Ravishankar, C, et al. Factors affecting growth in infants with single ventricle physiology: a report from the Pediatric Heart Network Infant Single Ventricle Trial. J Pediatr 2011; 159: 101722.e2. doi: 10.1016/j.jpeds.2011.05.051 CrossRefGoogle ScholarPubMed
Hoch, JM, Fatusin, O, Yenokyan, G, Thompson, WR, Lefton-Greif, MA. Feeding methods for infants with single ventricle physiology are associated with length of stay during stage 2 surgery hospitalization. Congenit Heart Dis 2019; 14: 438445. doi: 10.1111/chd.12742 CrossRefGoogle ScholarPubMed
Anderson, JB, Beekman, RH, Border, WL, et al. Lower weight-for-age z score adversely affects hospital length of stay after the bidirectional Glenn procedure in 100 infants with a single ventricle. J Thorac Cardiovasc Surg 2009; 138: 397404.e1. doi: 10.1016/j.jtcvs.2009.02.033 CrossRefGoogle Scholar
Medoff-Cooper, B, Irving, SY, Marino, BS, et al. Weight change in infants with a functionally univentricular heart: from surgical intervention to hospital discharge. Cardiol Young 2011; 21: 136144. doi: 10.1017/S104795111000154X CrossRefGoogle ScholarPubMed
Uzark, K, Wang, Y, Rudd, N, et al. Interstage feeding and weight gain in infants following the Norwood operation: can we change the outcome? Cardiol Young 2012; 22: 520527. doi: 10.1017/S1047951111002083 CrossRefGoogle ScholarPubMed
Ciotti, G, Holzer, R, Pozzi, M, Dalzell, M. Nutritional support via percutaneous endoscopic gastrostomy in children with cardiac disease experiencing difficulties with feeding. Cardiol Young 2002; 12: 537541. doi: 10.1017/S1047951102000975 CrossRefGoogle ScholarPubMed
Hill, GD, Hehir, DA, Bartz, PJ, et al. Effect of feeding modality on interstage growth after stage I palliation: a report from the National Pediatric Cardiology Quality Improvement Collaborative. J Thorac Cardiovasc Surg 2014; 148: 15341539. doi: 10.1016/j.jtcvs.2014.02.025 CrossRefGoogle Scholar
Simsic, JM, Carpenito, K-R, Kirchner, K, et al. Reducing variation in feeding newborns with congenital heart disease. Congenit Heart Dis 2017; 12: 275281. doi: 10.1111/chd.12435 CrossRefGoogle ScholarPubMed
del Castillo, SL, McCulley, ME, Khemani, RG, et al. Reducing the incidence of necrotizing enterocolitis in neonates with hypoplastic left heart syndrome with the introduction of an enteral feed protocol. Pediatr Crit Care Med. Published online October 2009:1. doi: 10.1097/PCC.0b013e3181c01475 Google Scholar
Manuri, L, Morelli, S, Agati, S, et al. Early hybrid approach and enteral feeding algorithm could reduce the incidence of necrotising enterocolitis in neonates with ductus-dependent systemic circulation. Cardiol Young 2017; 27: 154160. doi: 10.1017/S1047951116000275 CrossRefGoogle ScholarPubMed
Newcombe, J, Fry-Bowers, E. A post-operative feeding protocol to improve outcomes for neonates with critical congenital heart disease. J Pediatr Nurs 2017; 35 (jns, 8607529): 139143. doi: 10.1016/j.pedn.2016.12.010 CrossRefGoogle ScholarPubMed
Braudis, NJ, Curley, MAQ, Beaupre, K, et al. Enteral feeding algorithm for infants with hypoplastic left heart syndrome poststage I palliation. Pediatr Crit Care Med 2009; 10: 460466. doi: 10.1097/PCC.0b013e318198b167 CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Elgersma et al. supplementary material

Elgersma et al. supplementary material 1

Download Elgersma et al. supplementary material(PDF)
PDF 340.8 KB
Supplementary material: PDF

Elgersma et al. supplementary material

Elgersma et al. supplementary material 2

Download Elgersma et al. supplementary material(PDF)
PDF 99.6 KB