Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T09:29:54.925Z Has data issue: false hasContentIssue false

Ternary Quadratic Forms and Eta Quotients

Published online by Cambridge University Press:  20 November 2018

Kenneth S. Williams*
Affiliation:
Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6 e-mail: williams@math.carleton.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\eta \left( z \right)\,\left( z\,\in \,\mathbb{C},\,\operatorname{Im}\left( z \right)\,>\,0 \right)$ denote the Dedekind eta function. We use a recent product-to-sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly ten eta quotients

$$f\left( z \right)\,:=\,{{\eta }^{a\left( {{m}_{1}} \right)}}\,\left( {{m}_{1}}z \right)\,.\,.\,.\,{{\eta }^{a\left( {{m}_{r}} \right)}}\,\left( {{m}_{r}}z \right)\,=\,\sum\limits_{n=1}^{\infty }{c\left( n \right){{e}^{2\pi inz}},\,\,\,z\,\in \,\mathbb{C},\,\operatorname{Im}\left( z \right)\,>\,0,}$$

such that the Fourier coefficients $c\left( n \right)$ vanish for all positive integers $n$ in each of infinitely many non-overlapping arithmetic progressions. For example, we show that if $f\left( z \right)\,=\,{{\eta }^{4}}\left( z \right){{\eta }^{9}}\left( 4z \right){{\eta }^{-2}}\left( 8z \right)$ we have $c\left( n \right)\,=\,0$ for all $n$ in each of the arithmetic progressions ${{\{16k\,+\,14\}}_{k\ge 0}},\,{{\{64k\,+\,56\}}_{k\ge 0}},\,{{\{256k,\,224\}}_{k\ge 0}},\,{{\{1024k\,+\,869\}}_{k\ge 0}},\,.\,.\,.$

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[1] Dickson, L. E., Modern elementary theory of numbers. University of Chicago Press, Chicago, IL, 1939.Google Scholar
[2] Gordon, B. and Robins, S., Lacunarity ofDedekind n-products. Glasgow Math. J. 37(1995), no. 1, 114. http://dx.doi.Org/10.1017/S0017089500030329 Google Scholar
[3] Kilford, L. J. P., Modular forms: a classical and computational introduction. Imperial College Press, London, 2008.Google Scholar
[4] Lehmer, D. H., The vanishing of Ramanujan's function T(«). Duke Math. J. 14(1947), 429433. http://dx.doi.Org/10.1215/S0012-7094-47-01436-1 Google Scholar
[5] Murty, V. K., Lacunarity of modular forms. J. Indian Math. Soc. 52(1987), 127146.Google Scholar
[6] Serre, J.-P., Sur la lacunarité des puissances de n. Glasgow Math. J. 27(1985), 203221. http://dx.doi.Org/10.1017/S0017089500006194 Google Scholar
[7] Williams, K. S., Quadratic forms and a product-to-sum formula. Acta Arith. 158(2013), no. 1, 7997. http://dx.doi.Org/10.4064/aa158-1-5 Google Scholar