Hostname: page-component-594f858ff7-pr6g6 Total loading time: 0 Render date: 2023-06-06T22:44:54.835Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

A Class of Finsler Metrics with Bounded Cartan Torsion

Published online by Cambridge University Press:  20 November 2018

Xiaohuan Mo
Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China e-mail:
Linfeng Zhou
Department of Mathematics, East China Normal University, 200241 Shanghai, P.R. China e-mail:
Rights & Permissions[Opens in a new window]


HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we find a class of $\left( \alpha ,\,\beta \right)$ metrics which have a bounded Cartan torsion. This class contains all Randers metrics. Furthermore, we give some applications and obtain two corollaries about curvature of this metrics.

Research Article
Copyright © Canadian Mathematical Society 2010


[1] Bao, D. and Chern, S. S., A note on the Gauss-Bonnet theorem for Finsler spaces. Ann. Math. 143(1996), no. 2, 233252. doi:10.2307/2118643CrossRefGoogle Scholar
[2] Bao, D., Chern, S. S., and Shen, Z., An Introduction to Riemann-Finsler Geometry. Graduate Texts inh Mathematics 200, Springer-Verlag, New York, 2000.CrossRefGoogle Scholar
[3] Bao, D., Robles, C., and Shen, Z., Zermelo navigation on Riemannian manifolds. J. Differential Geom. 66(2004), no. 3, 377435.CrossRefGoogle Scholar
[4] Burago, D. and Ivanov, S., Isometric embeddings of Finsler manifolds. Algebra i Analiz 5(1993), no. 1, 179192 (in Russian); translation in St.Petersburg Math. J. 5(1994), no. 1, 159–169.Google Scholar
[5] Cartan, E., Les espaces de Finsler. Actualités Scientifiques et Industrielles, no. 79, Hermann, Paris, 1934.Google Scholar
[6] Chern, S. S. and Shen, Z., Riemann-Finsler Geometry. Nankai Tracts in Mathematics 6, World Scientific, Hackensack, NJ, 2005.CrossRefGoogle Scholar
[7] Deicke, A., Über die Finsler-Räume mit Ai = 0, Arch. Math. 4(1953), 4551. doi:10.1007/BF01899750CrossRefGoogle Scholar
[8] Finsler, P., Über Kurven und Flächen in allgemeinen Räumen. Verlag Birkhäuser, Basel, 1951.CrossRefGoogle Scholar
[9] Ernic, K., A Guide to Maple. Springer, 1999.Google Scholar
[10] Mo, X. and Yang, C., The explicit construction of Finsler metrics with special curvature properties. Differential. Geom. Appl. 24(2006), no. 2, 119129. doi:10.1016/j.difgeo.2005.08.004CrossRefGoogle Scholar
[11] Nash, J., The immedding problem for Riemannian manifolds. Ann. of Math. 63(1956), 2063. doi:10.2307/1969989CrossRefGoogle Scholar
[12] Shen, Z., Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht, 2001.CrossRefGoogle Scholar
[13] Shen, Z., Finsler metrics with K = 0 and S = 0 . Canad. J. Math. 55(2003), no. 1, 112132.CrossRefGoogle Scholar
[14] Shen, Z., On R-quadratic Finsler spaces. Publ. Math. Debrecen 58(2001), no. 1–2, 263274.Google Scholar
[15] Shen, Z., On Finsler geometry of submanifolds. Math. Ann. 311(1998), no. 3, 549576. doi:10.1007/s002080050200CrossRefGoogle Scholar