Skip to main content Accessibility help
Hostname: page-component-747cfc64b6-nq4kt Total loading time: 0.308 Render date: 2021-06-13T20:41:53.392Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Falls and Wrist Fracture: Relationship to Women’s Functional Status after Age 50

Published online by Cambridge University Press:  01 July 2016

Catherine M. Arnold
School of Physical Therapy, College of Medicine, University of Saskatchewan
Vanina P.M. Dal Bello-Haas
School of Rehabilitation Science, McMaster University
Jonathan P. Farthing
College of Kinesiology, University of Saskatchewan
Katie L. Crockett
School of Physical Therapy, College of Medicine, University of Saskatchewan
Charlene R.A. Haver
College of Kinesiology, University of Saskatchewan
Geoffrey Johnston
Department of Surgery, College of Medicine, University of Saskatchewan
Jenny Basran
Department of Medicine, College of Medicine, University of Saskatchewan
E-mail address:


Women experience a rapid rise in the incidence of wrist fracture after age 50. Accordingly, this study aimed to (1) determine the internal and environmental fall-related circumstances resulting in a wrist fracture, and (2) examine the relationship of functional status to these circumstances. Women aged 50 to 94 years reported on the nature of the injury (n = 99) and underwent testing for physical activity status, balance, strength, and mobility (n = 72). The majority of falls causing wrist fracture occurred outdoors, during winter months, as a result of a slip or trip while walking. Half of these falls resulted in other injuries including head, neck, and spine injuries. Faster walking speed, lower grip strength, and higher balance confidence were significantly associated with outdoor versus indoor falls and slips and trips versus other causes. This study provides insights into potential screening and preventive measures for fall-related wrist fractures in women.


Après l’âge de cinquante ans, les femmes éprouvent une hausse rapide de l’incidence des fractures du poignet. En conséquence, cette étude vise (1) de déterminer les circonstances internes et environnementaux liés aux chutes entraînant des fractures du poignet, et (2) d’examiner la relation entre l’état fonctionnel et de telles circonstances. Les femmes âgées de 50 à 94 années sont rapportées sur la nature de la blessure (n = 99) et ont subi tests pour l’activité physique, l’équilibre, la force et la mobilité (n = 72). La majorité des chutes causant la fracture d’un poignet a eu lieu à l’extérieur, pendant les mois d’hiver, à la suite d’un glissement ou trébuchement tout en marchant. La moitié de ces chutes a entraîné d’autres blessures, y compris à la tête et au cou, et des traumatismes médullaires. Une vitesse plus rapide de la marche, une force inférieure d’adhérence, et une plus grande confiance en équilibre ont été toutes significativement associées aux chutes à l’extérieure, par comparaison aux chutes, glissades et trébuchements intérieures contre d’autres causes. Cette étude donne un aperçu des mesures de dépistage et de prévention potentielles pour les fractures du poignet liées aux chutes parmi les femmes.

Copyright © Canadian Association on Gerontology 2016 

Access options

Get access to the full version of this content by using one of the access options below.


Albrand, G., Munoz, E., Sornay-Rendu, E., Duboeuf, F., & Delmas, P. D. (2003). Independent predictors of all osteoporosis-related fractures in healthy postmenopausal women: The OFELY Study. Bone, 32(1), 7885.CrossRefGoogle ScholarPubMed
Beil, F. T., Barvencik, F., Gebauer, M., Mumme, M., Beil, B., Pogoda, P., et al. (2011). The distal radius, the most frequent fracture localization in humans: A histomorphometric analysis of the microarchitecture of 60 human distal radii and its changes in aging. Journal of Trauma Injury, Infection, and Critical Care, 70(1), 154158.CrossRefGoogle Scholar
Berg, K., Wood-Dauphinee, S., Williams, J. I., & Gayton, D. (1989). Measuring balance in the elderly: Preliminary development of an instrument. Physiotherapy Canada, 41, 304311.CrossRefGoogle Scholar
Borson, S., Scanlan, J., Brush, M., Vitaliano, P., & Dokmak, A. (2000). The mini-cog: A cognitive “vital487 signs” measure for dementia screening in multi-lingual elderly. International Journal of Geriatric Psychiatry, 15(11), 10211027.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Brogren, E., Hofer, M., Petranek, M., Dahlin, L. B., & Atroshi, I. (2012). Fractures of the distal radius in women aged 50 to 75 years: Natural course of patient-reported outcome, wrist motion and grip strength between 1 year and 2–4 years after fracture. Journal of Hand Surgery, 36E(7), 568576.Google Scholar
Canadian Institute for Health Information (2007). Canadian Brain and Nerve Health Coalition: The burden of neurological diseases, disorders and injuries in Canada. Retrieved from
Cho, Y. J., Gong, H. S., Song, C. H., Lee, Y. H., & Baek, G. H. (2014). Evaluation of physical performance as a fall risk factor in women with a distal radial fracture. Journal of Bone Joint Surgery, 96(5), 361365.CrossRefGoogle ScholarPubMed
Chung, C., Wu, C., Jones, M., Tomoko, A., Tien, D., Givens, R., … Schultz, C. (2014). Reduced handgrip strength as a marker of frailty predicts clinical outcomes in patients with heart failure undergoing ventricular assist device placement. Journal of the American Medical Association, 20(5), 310315.Google ScholarPubMed
Crockett, K., Arnold, C., Farthing, J., Chilibeck, P., Bath, B., Baxter-Jones, A. D. G., & Kontulainen, S. A. (2015). Bone strength and muscle properties in older women with and without a history of recent distal radius fracture. Osteoporosis International, 26(10), 24612469.CrossRefGoogle Scholar
Cuddihy, M. T., Gabriel, S. E., Crowson, C. S., O’Fallon, W. M., & Melton, L. J. (1999). Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporosis International, 9(6), 469475.CrossRefGoogle ScholarPubMed
Cummings, S. R., & Melton, L. J. (2002). Epidemiology and outcomes of osteoporotic fractures. Lancet, 359(9319), 17611767.CrossRefGoogle ScholarPubMed
Dalbaere, K., Crombez, G., Vanderstraeten, G., Willems, T., & Cambier, D. (2004). Fear related avoidance of activities, falls and physical frailty. A prospective community based cohort study. Age and Ageing, 33(4), 368373.CrossRefGoogle Scholar
DeGoede, K. M., & Ashton-Miller, J. A. (2003). Biomechanical simulations of forward fall arrests: Effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength. Journal of Biomechanics, 36, 413420.CrossRefGoogle ScholarPubMed
Environment Canada (2016). Current Results Weather and Science Facts Sunniest Cities in Canada. Retrieved from
Giangregorio, L. M., Papaioannou, A., Macintyre, N. J., Ashe, M. C., Heinonen, A., Shipp, K., … Cheung, A. M. (2014). Too fit to fracture: Exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporosis International, 25(3), 821835.CrossRefGoogle ScholarPubMed
Graafmans, W. C., Ooms, M. E., Bezemer, P. D., Bouter, L. M., & Lips, P. (1996). Different risk profiles for hip fractures and distal forearm fractures: A prospective study. Osteoporosis International, 6(6), 427431.CrossRefGoogle ScholarPubMed
Harvey, L. A., & Close, J. C. (2012). Traumatic brain injury in older adults: Characteristics, causes and consequences. Injury, 43(11), 18211826.CrossRefGoogle ScholarPubMed
Hill, K. (2005). Activities-specific and balance confidence (ABC) scale. Australian Journal of Physiotherapy, 51(3), 197.CrossRefGoogle ScholarPubMed
Hinman, M. (2002). Comparison of two short-term balance training programs for community-dwelling older adults. Journal of Geriatric Physical Therapy, 25(3), 1020.CrossRefGoogle Scholar
Hsiao, E. T., & Robinovitch, S. N. (1998). Common protective movements govern unexpected falls from standing height. Journal of Biomechanics, 31(1), 19.CrossRefGoogle ScholarPubMed
Jones, C. J., Rikli, R. E., & Beam, W. C. (1999). A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Research Quarterly Exercise and Sport, 70(2), 113119.CrossRefGoogle ScholarPubMed
Kelsey, J. L., Prill, M. M., Keegan, T. H., Tanner, H. E., Bernstein, A. L., Quesenberry, C. P. Jr., & Sidney, S. (2005). Reducing the risk for distal forearm fracture: Preserve bone mass, slow down, and don’t fall! Osteoporosis International, 16, 681690.CrossRefGoogle ScholarPubMed
Kelsey, J. L., Browner, W. S., Seeley, D. G., Nevitt, M. C., & Cummings, S. R. (1992). Risk factors for fractures of the distal forearm and proximal humerus. The Study of Osteoporotic Fractures Research Group. American Journal of Epidemiology, 135(5), 477489.CrossRefGoogle ScholarPubMed
Lattimer, L., Lanovaz, J., Farthing, J. P., Kim, S., Madill, S., Robinovitch, S., & Arnold, C. (2014). Differences between younger and older women in muscle strength and biomechanics during a controlled descent on outstretched arms. Poster session at the 43rd Annual Scientific and Education Meeting of the Canadian Association on Gerontology, Niagara Falls, ON.
Magnus, C. R., Arnold, C. M., Johnston, G., Dal-Bello Haas, V., Basran, J., Krentz, J. R., & Farthing, J. P. (2013). Cross-education for improving strength and mobility after distal radius fractures: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 94(7), 12471255.CrossRefGoogle ScholarPubMed
Myers, A. M., Powell, L. E., Maki, B. E., Holliday, P. J., Brawley, L. R., & Sherk, W. (1996). Psychological indicators of balance confidence: Relationship to actual and perceived abilities. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 51(1), M37M43.CrossRefGoogle ScholarPubMed
Nellans, K., Kowalski, E., & Chung, K. (2012). The epidemiology of distal radius fractures. Hand Clinics, 28(2), 113115.CrossRefGoogle ScholarPubMed
O’Neill, T. W., Varlow, J., Silman, A. J., Reeve, J., Reid, D. M., Todd, C., & Woolf, A. D. (1994). Age and sex influences on fall characteristics. Annals Rheumatic Diseases, 53(11), 773775.CrossRefGoogle ScholarPubMed
Orces, C. H., & Martinez, F. J. (2011). Epidemiology of fall related forearm and wrist fractures among adults treated in US hospital emergency departments. Injury Prevention, 17, 3336. doi: 10.1136/ip.2010.026799 CrossRefGoogle ScholarPubMed
Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society. (2011). Summary of the updated American Geriatrics Society/British Geriatrics Society Clinical Practice Guideline for Prevention of Falls in Older Persons. Journal of the American Geriatrics Society, 59(1), 148157.CrossRefPubMed
Papaioannou, A., Morin, S., Cheung, A. M., Atkinson, S., Brown, J. P., Feldman, S., … Scientific Advisory Council of Osteoporosis Canada. (2010). 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: Summary. Retrieved from
Public Health Agency of Canada (2014). Seniors’ Falls in Canada: Second Report. Ottawa, ON: Author.PubMed
Qu, X., Zhang, X., Zhai, Z., Li, H., Liu, X., Liu, G., … & Dai, K. (2014). Association between physical activity and risk of fracture. Journal of Bone and Mineral Research, 29(1), 202211.CrossRefGoogle ScholarPubMed
Quach, L., Galica, A. M., Jones, R. N., Proctor-Gray, E., Manor, B., Hannan, M. T., & Lipsitz, L. A. (2011). The nonlinear relationship between gait speed and falls: The maintenance of balance, independent living, intellect, and zest in the Elderly of Boston Study. Journal of American Geriatrics Society, 59(6), 10691073.CrossRefGoogle Scholar
Rantanen, T., Volpato, S., Ferrucci, L., Heikkinen, E., Fried, L. P., & Guralnik, J. M. (2003). Handgrip strength and cause-specific and total mortality in older disabled women: Exploring the mechanism. Journal of American Geriatric Society, 51(5), 636641.CrossRefGoogle ScholarPubMed
Robinovitch, S. N., Feldman, F., Yang, Y., Schonnop, R., Leung, P. M., Sarraf, T., … Loughin, M. (2013). Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. Lancet, 381(9860), 4754.CrossRefGoogle Scholar
Rose, D. (2010). Fallproof! A comprehensive balance and mobility training program. Champaign, IL: Human Kinetics.Google Scholar
Rucker, D., Rowe, B. H., Johnson, J. A., Steiner, I. P., Russell, A. S., Hanley, D. A., … Majumdar, S. R. (2006). Educational intervention to reduce falls and fear of falling in patients after fragility fracture: Results of a controlled pilot study. Preventive Medicine Journal, 42(4), 316319.CrossRefGoogle ScholarPubMed
Sattin, R. W., Lambert Huber, D. A., DeVito, C. A., Rodriguez, J. G., Ros, A., Bacchelli, S., …Waxweiler, R. J. (1990). The incidence of fall injury events among the elderly in a defined population. American Journal of Epidemiology, 131(6), 10281037.CrossRefGoogle Scholar
Schonnop, R., Yang, Y., Feldman, F., Robinson, E., Loughin, M., & Robinovitch, S. N. (2013). Prevalence of and factors associated with head impact during falls in older adults in long-term care. Canadian Medical Association Journal, 185(17), E803E810.CrossRefGoogle Scholar
Shaver, K. G., & Drown, D. (1986). On causality, responsibility, and self-blame: A theoretical note. Journal of Personality and Social Psychology, 50(4), 697702.CrossRefGoogle ScholarPubMed
Silman, A. J. (2003). Risk factors for colles’ fracture in men and women: Results from the European Prospective Osteoporosis Study. Osteoporosis International, 14, 213218.CrossRefGoogle ScholarPubMed
Sran, M. M., Stotz, P. J., Normandin, S. C., & Robinovitch, S. N. (2010). Age differences in energy absorption in the upper extremity during a descent movement: Implications for arresting a fall. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 65(3), 312317.CrossRefGoogle ScholarPubMed
Stevens, J. A., Corso, P. S., Finkelstein, E. A., & Miller, T. R. (2006). The costs of fatal and non-fatal falls among older adults. Injury Prevention, 12(5), 290295.CrossRefGoogle ScholarPubMed
van den Bogert, A. J., Pavol, M. J., & Grabiner, M. D. (2002). Response time is more important than walking speed for the ability of older adults to avoid a fall after a trip. Journal of Biomechanics, 35(2), 199205.CrossRefGoogle ScholarPubMed
VanSwearingen, H. M., & Brach, J. S. (2001). Making geriatric assessment work: Selecting useful measures. Physical Therapy, 81(6), 12331252.Google ScholarPubMed
Washburn, R. A., McAuley, E., Katula, J., Mihalko, S. L., & Boileau, R. A. (1999). The physical activity scale for the elderly (PASE): Evidence for validity. Journal of Clinical Epidemiology, 52(7), 643651.CrossRefGoogle Scholar
World Health Organization (2003). Prevention and management of osteoporosis: Report of a WHO scientific group. WHO Technical Reports Series 921. Geneva, Switzerland: Author.
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Falls and Wrist Fracture: Relationship to Women’s Functional Status after Age 50
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Falls and Wrist Fracture: Relationship to Women’s Functional Status after Age 50
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Falls and Wrist Fracture: Relationship to Women’s Functional Status after Age 50
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *