Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T17:23:15.084Z Has data issue: false hasContentIssue false

Tumor Effects on Cerebral White Matter as Characterized by Diffusion Tensor Tractography

Published online by Cambridge University Press:  02 December 2014

Corie W. Wei
Affiliation:
Schulich School of Medicine and Dentistry, University of Western, Ontario, London, ON
Gang Guo
Affiliation:
Department of Radiology, Shantou University, Shantou, China
David J. Mikulis
Affiliation:
Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Diffusion tensor MRI fiber tractography (DTT) is the first non-invasive in vivo technique for delineating specific white matter (WM) tracts. In cerebral neoplasm, DTT can be used to illustrate the relationship of the tumor with respect to adjacent WM trajectories.

Methods:

Fiber tractography was used in this study to assess tumor-induced changes in WM trajectories in three cases of cerebral neoplasm: glioblastoma multiforme, meningioma, and anaplastic astrocytoma.

Results:

Three patterns of WM alteration were identified: 1) disruption, 2) displacement, and 3) infiltration. Tumor disruption of WM tracts was observed in glioblastoma multiforme, which terminated fibers crossing the corpus callosum. In meningioma, DTT illustrated bulk displacement of the corticospinal tract in the affected hemisphere as well as preservation of the deviated axons. In anaplastic astrocytoma, fiber tracking demonstrated disruption of WM tracts at the tumor origin as well as intact axons through areas of tumor infiltration.

Conclusions:

Fiber tracking results correlated with the clinical and histopathological features of the tumor. Larger case series will be required to determine if fiber tracking can add accuracy to existing imaging methods for grading tumors.

Résumé:

RÉSUMÉ:Contexte:

La tractographie par IRM en tenseur de diffusion (TTD) pour étudier les fibres de la substance blanche (SB) est la première technique non effractive in vivo permettant de localiser des faisceaux spécifiques. Dans les tumeurs cérébrales, la TTD peut être utilisée pour illustrer la relation entre la tumeur et la trajectoire des faisceaux de la SB adjacents à la tumeur.

Méthodes:

La tractographie de faisceaux de fibres a été utilisée dans cette étude pour évaluer les changements induits par la tumeur dans la trajectoire de faisceaux de la SB chez trois cas de néoplasie cérébrale : un glioblastome multiforme, un méningiome et un astrocytome anaplasique.

Résultats:

Trois types de changements ont été identifiés dans la SB : 1) interruption; 2) déplacement et 3) infiltration. L' interruption de faisceaux de la SB à travers le corps calleux a été observée dans le glioblastome multiforme. Dans le méningiome, la TTD a montré un déplacement en masse du faisceau corticospinal dans l'hémisphère touché ainsi que la préservation des axones déplacés. Dans l'astrocytome anaplasique, la tractographie a montré une interruption des faisceaux de la SB là oùtumeur avait pris naissance ainsi que des axones intacts dans les zones d'infiltration de la tumeur.

Conclusions:

Les résultats de la tractographie concordaient avec les manifestations cliniques et histopathologiques de la tumeur. Il faudra étudier un plus grand nombre de cas pour déterminer si la tractographie de fibres peut améliorer la précision des méthodes d'imagerie actuelles pour évaluer le grade d'une tumeur.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Wimberger, DM, Roberts, TP, Barkovich, AJ, Prayer, LM, Moseley, ME, Kucharczyk, J. Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomography. 1995; 19:2833.Google Scholar
2. Brunberg, JA, Chenevert, TL, McKeever, PE, Ross, DA, Junck, LR, Muraszko, KM, et al. In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol. 1995;16:36171.Google Scholar
3. Chien, D, Kwong, KK, Gress, DR, Buonanno, FS, Buxton, RB, Rosen, BR. MR diffusion imaging of cerebral infarction in humans. AJNR Am J Neuroradiol. 1992;13:10971102; discussion 11031095.Google Scholar
4. Pierpaoli, C, Jezzard, P, Basser, PJ, Barnett, A, Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:63748.Google Scholar
5. Witwer, BP, Moftakhar, R, Hasan, KM, Deshmukh, P, Haughton, V, Field, A, et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg. 2002;97:56875.Google Scholar
6. Le Bihan, D, Mangin, JF, Poupon, C, Clark, CA, Pappata, S, Molko, N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13:53446.Google Scholar
7. Bammer, R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45:16984.Google Scholar
8. Basser, PJ, Pajevic, S, Pierpaoli, C, Duda, J, Aldroubi, A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44: 62532.Google Scholar
9. Conturo, TE, Lori, NF, Cull, TS, Akbudak, E, Snyder, AZ, Shimony, JS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA. 1999;96:104227.Google Scholar
10. Gossl, C, Fahrmeir, L, Putz, B, Auer, LM, Auer, DP. Fiber tracking from DTI using linear state space models: detectability of the pyramidal tract. Neuroimage. 2002;16:37888.Google Scholar
11. Mori, S, Crain, BJ, Chacko, VP, van Zijl, PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:2659.Google Scholar
12. Bammer, R, Acar, B, Moseley, ME. In vivo MR tractography using diffusion imaging. Eur J Radiol. 2003;45:22334.Google Scholar
13. Lori, NF, Akbudak, E, Shimony, JS, Cull, TS, Snyder, AZ, Guillory, RK, et al. Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed. 2002;15:494515.Google Scholar
14. Mori, S, van Zijl, PC. Fiber tracking: principles and strategies - a technical review. NMR Biomed. 2002;15:46880.Google Scholar
15. Catani, M, Howard, RJ, Pajevic, S, Jones, DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17:7794.Google Scholar
16. Mamata, H, Mamata, Y, Westin, CF, Shenton, ME, Kikinis, R, Jolesz, FA, et al. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. AJNR Am J Neuroradiol. 2002;23:6775.Google Scholar
17. Field, AS, Alexander, AL, Wu, YC, Hasan, KM, Witwer, B, Badie, B. Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor. Top Magn Reson Imaging. 2004;15:31524.Google Scholar
18. Cosgrove, GR, Buchbinder, BR, Jiang, H. Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin N Am. 1996;7:31322.Google Scholar
19. Schulder, M, Maldjian, JA, Liu, WC, Holodny, AI, Kalnin, AT, Mun, IK, et al. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg. 1998; 89:41218.Google Scholar
20. Mori, S, Frederiksen, K, van Zijl, PC, Stieltjes, B, Kraut, MA, Solaiyappan, M, et al. Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Ann Neurol. 2002;51:37780.Google Scholar
21. Holodny, AI, Ollenschleger, MD, Liu, WC, Schulder, M, Kalnin, AJ. Identification of the corticospinal tracts achieved using blood-oxygen-level-dependent and diffusion functional MR imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001; 22:838.Google Scholar
22. Field, AS, Wu, YC, Alexander, AL. Principal diffusion direction in peritumoral fiber tracts: color map patterns and directional statistics. Ann N Y Acad Sci. 2005;1064:193201.Google Scholar
23. Moller-Hartmann, W, Krings, T, Coenen, VA, Mayfrank, L, Weidemann, J, Kranzlein, H, et al. Preoperative assessment of motor cortex and pyramidal tracts in central cavernoma employing functional and diffusion-weighted magnetic resonance imaging. Surg Neurol. 2002;58:3027; discussion 308.Google Scholar
24. Holodny, AI, Schwartz, TH, Ollenschleger, M, Liu, WC, Schulder, M. Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg. 2001;95:1082.Google Scholar
25. Clark, CA, Barrick, TR, Murphy, MM, Bell, BA. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage. 2003; 20:16018.Google Scholar
26. Jena, R, Price, SJ, Baker, C, Jefferies, SJ, Pickard, JD, Gillard, JH, et al. Diffusion tensor imaging: possible implications for radiotherapy treatment planning of patients with high-grade glioma. Clin Oncol (R Coll Radiol). 2005;17:58190.CrossRefGoogle ScholarPubMed
27. Yu, CS, Li, KC, Xuan, Y, Ji, XM, Qin, W. Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. Eur J Radiol. 2005;56:197204.Google Scholar
28. Jellison, BJ, Field, AS, Medow, J, Lazar, M, Salamat, MS, Alexander, AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25:35669.Google Scholar
29. Field, AS. Diffusion tensor imaging at the crossroads: fiber tracking meets tissue characterization in brain tumors. AJNR Am J Neuroradiol. 2005;26:21689.Google ScholarPubMed
30. Field, AS. Diffusion tensor imaging at the crossroads: fiber tracking meets tissue characterization in brain tumors. AJNR Am J Neuroradiol. 2005;26:21689.Google Scholar
31. Sugahara, T, Korogi, Y, Kochi, M, Ikushima, I, Shigematu, Y, Hirai, T, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999;9:5360.Google Scholar
32. Gauvain, KM, McKinstry, RC, Mukherjee, P, Perry, A, Neil, JJ, Kaufman, BA, et al. Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol. 2001; 177:44954.Google Scholar
33. Kono, K, Inoue, Y, Nakayama, K, Shakudo, M, Morino, M, Ohata, K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001;22:10818.Google Scholar
34. Guo, AC, Cummings, TJ, Dash, RC, Provenzale, JM. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology. 2002;224:17783.CrossRefGoogle ScholarPubMed
35. Inoue, T, Ogasawara, K, Beppu, T, Ogawa, A, Kabasawa, H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005;107:17480.Google Scholar
36. Lu, S, Ahn, D, Johnson, G, Law, M, Zagzag, D, Grossman, RI. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology. 2004;232:2218.Google Scholar
37. Helton, KJ, Phillips, NS, Khan, RB, Boop, FA, Sanford, RA, Zou, P, et al. Diffusion tensor imaging of tract involvement in children with pontine tumors. AJNR Am J Neuroradiol. 2006;27:78693.Google Scholar
38. Schonberg, T, Pianka, P, Hendler, T, Ofer, Pasternak, Assaf, Y. Characterization of displace white matter by brain tumors using combined DTI and fMRI. Neuroimage. 2006;30:110011.Google Scholar
39. Song, SK, Sun, SW, Ju, WK, Lin, SJ, Cross, AH, and Neufeld, AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage. 2003;20 (3): 171422.CrossRefGoogle ScholarPubMed
40. Roberts, TP, Liu, F, Kassner, A, Mori, S, Guha, A. Fiber density index correlates with reduced fractional anisotropy in white matter of patients with glioblastoma. AJNR Am J Neuroradiol. 2005; 26:21836.Google Scholar
41. Lee, SK, Kim, DI, Kim, J, Kim, DJ, Kim, HD, Kim, DS, et al. Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics. 2005;25:5365; discussion 66-58.Google Scholar
42. Basser, PJ, Pajevic, S. Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med. 2000; 44:4150.Google Scholar
43. Wu, YC, Field, AS, Chung, MK, Badie, B, Alexander, AL. Quantitative analysis of diffusion tensor orientation: theoretical framework. Magn Reson Med. 2004;52:114655.Google Scholar
44. Laundre, BJ, Jellison, BJ, Badie, B, Alexander, AL, Field, AS. Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings: preliminary data. AJNR Am J Neuroradiol. 2005; 26:7916.Google ScholarPubMed