Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T21:46:44.869Z Has data issue: false hasContentIssue false

Multiple Sclerosis - A Vascular Etiology?

Published online by Cambridge University Press:  23 September 2016

Bryce Weir*
Affiliation:
Department of Surgery, University of Chicago, Illinois, USA, University of Alberta, Edmonton, Alberta, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

From the earliest pathological studies the perivenular localization of the demyelination in multiple sclerosis (MS) has been observed. It has recently been suggested that obstructions to venous flow or inadequate venous valves in the great veins in the neck, thorax and abdomen can cause damaging backflow into the cerebral and spinal cord circulations. Paolo Zamboni and colleagues have demonstrated abnormal venous circulation in some multiple sclerosis patients using non-invasive sonography and invasive venography. Furthermore, they have obtained apparent clinical improvement or stabilization by endovascular ballooning of points of obstruction in the great veins in some, at least temporarily. If non-invasive observations by others validate their initial observations of a significantly increased prevalence of venous obstructions in MS then trials of angioplasty/stenting would be justified in selected cases in view of the biological plausibility of the concept.

Résumé

Résumé

La localisation périveineuse de la démyélinisation a été observée dès les premières études anatomopathologiques sur la sclérose en plaques (SP). L'obstruction du flux veineux ou la présence de valves veineuses inadéquates dans les grandes veines du cou, du thorax et de l'abdomen pourraient causer un reflux dommageable à la circulation cérébrale et la moelle épinière selon une hypothèse récente. Paolo Zamboni et ses collègues ont démontré la présence d'une circulation veineuse anormale chez certains patients atteints de SP au moyen l'échographie non effractive et de la veinographie effractive. De plus ils auraient obtenu une amélioration clinique ou une stabilisation de l'état des patients par dilatation endovasculaire de points d'obstruction dans les grandes veines chez certains patients, du moins temporairement. Si des observations non effractives par d'autres chercheurs valident ces observations initiales d'une prévalence significativement accrue d'obstructions veineuses dans la SP, des essais thérapeutiques d'angioplastie/endoprothèse seraient justifiés chez des patients bien choisis, à cause de la plausibilité biologique du concept.

Type
Review Articles
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Zamboni, P. The big idea: iron-dependent inflammation in venous disease and proposed parallels in multiple sclerosis. JR Soc Med. 2006;99(11):589–93.10.1258/jrsm.99.11.589Google Scholar
2. Giovannoni, G, Cutter, GR. Infectious causes of multiple sclerosis. Lancet Neurol. 2006;5(10):887–94.10.1016/S1474-4422(06)70577-4Google Scholar
3. Ruiz, DSM. Gailloud, P, Rufenacht, DA. The craniocervical venous system in relation to cerebral venous drainage. AJNR Am J Neuroradiol. 2002;23(9):1500–8.Google Scholar
4. Groen, RJM, Groenewegen, HJ, van Alphen, HAM, et al. Morphology of the human internal vertebral venous plexus: a cadaver study after intravenous araldite CY 221. Anat Rec Part A. 1998; 249(2):285–94.Google Scholar
5. Lepori, D, Capasso, P, Fournier, D, et al. High resolution ultrasound evaluation of internal jugular venous valves. Eur Radiol. 1999;9 (6):1222–6.10.1007/s003300050822Google Scholar
6. Dresser, LP, Mckinney, WM. Anatomic and pathophysiologic studies of the human internal jugular valve. Am J Surg. 1987; 154(2):220–4.10.1016/0002-9610(87)90185-1Google Scholar
7. Paleri, V, Gopalakrishnan, S. Jugular phlebectasia: theory of pathogenesis and review of the literature. Int J Pediatr Otorhinolaryngol. 2001;57(2):155–9.10.1016/S0165-5876(00)00435-3Google Scholar
8. Van der Kuip, M, Hoogland, PV, Groen, RJ. Human radicular veins: regulation of venous reflux in the absence of valves. Anat Rec. 1999;254(2):173–80.10.1002/(SICI)1097-0185(19990201)254:2<173::AID-AR3>3.0.CO;2-B99728023.0.CO;2-B9972802>Google Scholar
9. Scapinelli, R. Antireflux mechanisms in veins draining the upper territory of the vertebral column and spinal cord in man. Clin Anat. 2000;13(6):410–5.10.1002/1098-2353(2000)13:6<410::AID-CA3>3.0.CO;2-Q111118913.0.CO;2-Q11111891>Google Scholar
10. Zamboni, P, Consorti, G, Galeotti, R, et al. Venous collateral circulation of the extracranial cerebrospinal outflow routes. Curr Neurovasc Res. 2009;6(3):204–12.10.2174/15672020978897005419534716Google Scholar
11. Herlihy, WF. Revision of the venous system: the role of the vertebral veins. Med J Aust. 1947;1(22):661–72.20250253Google Scholar
12. Pang, CCY. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol Ther. 2001;90(2–3): 179230.10.1016/S0163-7258(01)00138-311578657Google Scholar
13. Lin, W, Celik, RP, Paczynski, RP, et al. Quantitative magnetic resonance imaging in experimental hypercapnia: improvement in the relation between changes in brain R2 and the oxygen saturation of venous blood after correction for regional blood volume. J Cereb Blood Flow Metab. 1999;19(8):853–62.10458592Google Scholar
14. Schaller, B. Physiology of cerebrovenous blood flow: from experimental data in animals to normal function in humans. Brain Res Rev. 2004;46(3):243–60.10.1016/j.brainresrev.2004.04.00515571768Google Scholar
15. Inao, S, Kuchiwaki, H, Yoshida, J, et al. Magnetic resonance imaging quantification of superior sagittal sinus flow. Correlation to cerebral blood flow measured by Xenon enhanced computerized tomography. Neurol Res. 1997;19(1):3540.9090634Google Scholar
16. Valdueza, JM, Schmierer, K, Mehraein, S, Einhaupl, KM. Assessment of normal flow velocity in basal cerebral veins. A transcranial Doppler ultrasound study. Stroke. 1996;27(7):1221–5.10.1161/01.STR.27.7.12218685932Google Scholar
17. Gisolf, J, van Lieshout, J, van Keudsen, K, Pott, F, Stok, WJ, Karemaker, JM. Human jugular venous outflow pathways depend on posture and cerebral venous pressure. J Physiol. 2004 (Oct. 17);560(Pt. 1):317–27.10.1113/jphysiol.2004.07040915284348Google Scholar
18. Menegatti, E, Zamboni, P. Doppler haemodynamics of cerebral venous return. Curr Neurovasc Res. 2008;5(4):260–5.10.2174/15672020878641344218991660Google Scholar
19. Stoquart-ElSankari, S, Lehmann, P, Vilette, A, et al. A phase-contrast MRI study of physiological cerebral venous flow. J Cereb Blood Flow Metab. 2009;29(6):1208–15.10.1038/jcbfm.2009.2919352399Google Scholar
20. Mehta, NR, Jones, L, Kraut, MA, et al. Physiological variations in dural venous flow on phase-contrast MR imaging. AJR Amer J Roentgenol. 2000;175(1):221–5.10.2214/ajr.175.1.1750221Google Scholar
21. Zervides, C, Narracott, AJ, Lawford, PV, et al. The role of venous valves in pressure shielding. Biomed Eng OnLine. 2008;7(Feb.15):8.10.1186/1475-925X-7-818279514Google Scholar
22. Buxton, GA, Clarke, N. Computational phlebology: the simulation of a vein valve. J Biol Physics. 2007;32(6):507–21.10.1007/s10867-007-9033-4Google Scholar
23. Putnam, TJ. Lesions of “encephalomyelitis” and multiple sclerosis. JAMA. 1937;108(18):1477–80.10.1001/jama.1937.02780180001001Google Scholar
24. Schlesinger, B. The venous drainage of the brain, with special reference to the galenic system. Brain. 1939;62:274.10.1093/brain/62.3.274Google Scholar
25. Fog, T. The topography of plaques in multiple sclerosis. With special reference to cerebral plaques. Acta Neurol Scand. 1965;41 Suppl 15:1161.Google Scholar
26. Scheinker, M. Histogenesis of the early lesions of multiple sclerosis. 1. Significance of the vascular changes. Arch Neurol Psychiat. 1943;49:178.10.1001/archneurpsyc.1943.02290140038002Google Scholar
27. Macchi, G. The pathology of the blood vessels in multiple sclerosis. J Neuropath Exp Neurol. 1954;13(2):378–84.10.1097/00005072-195404000-0000813152559Google Scholar
28. Adams, CWM, Abdulla, YH, Torres, EM, Poston, RN. Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropath Appl Neurobiol. 1987;13(2):141–52.10.1111/j.1365-2990.1987.tb00177.xGoogle Scholar
29. Adams, CW. Vascular aspects of multiple sclerosis. Ch.8. In: Adams CW. A colour atlas of multiple sclerosis and other myelin disorders. London: Wolfe Medical Publications; 1989.Google Scholar
30. Barnett, MH, Prineas, JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55(4):458–68.10.1002/ana.2001615048884Google Scholar
31. Lucchinetti, C, Bruck, W, Parisi, J, Scheithauer, B, Rodriguez, M, Lassmann, H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000 47(6):707–17.10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q108525363.0.CO;2-Q10852536>Google Scholar
32. Aboul-Enein, F, Rauschka, H, Kornek, B, et al. Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropath Exp Neurol. 2003;62(1):2533.12528815Google Scholar
33. Aboul-Enein, F, Lassmann, H. Mitochondrial damage and histotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease? Acta Neuropath. 2005;109(1):4955.10.1007/s00401-004-0954-815645261Google Scholar
34. Broman, T. Blood-brain barrier damage in multiple sclerosis. Supravital test observation. Acta Neurol Scand. 1964;Suppl 10:21–4.14108415Google Scholar
35. Van Horssen, J, Brink, B, de Vries, HE, van der Valk, P, Bo, L. The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropath Exp Neurol. 2007;66(4):321–8.10.1097/nen.0b013e318040b2de17413323Google Scholar
36. Minagar, A, Alexander, JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler. 2003;9(6):540–9.10.1191/1352458503ms965oa14664465Google Scholar
37. Leech, S, Kirk, J, Plumb, J, et al. Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis. J Neuropath Applied Neurobiol. 2007;33(1):8698.Google Scholar
38. Van Horssen, J, Vos, CMP, Admiraal, L, et al. Matrix metalloproteinase-19 is highly expressed in active multiple sclerosis lesions. Neuropathol App Neurobiol. 2006;32(6):585–93.10.1111/j.1365-2990.2006.00766.xGoogle Scholar
39. Comabella, M, Rio, J, Espejo, C, et al. Changes in matrix metalloproteinases and their inhibitors during interferon-beta treatment in multiple sclerosis. Clin Immunol. 2009;130(2):145–50.10.1016/j.clim.2008.09.01018945642Google Scholar
40. Haacke, EM, Cheng, NYC, House, MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Mag Res Imag. 2005(1);23:125.10.1016/j.mri.2004.10.001Google Scholar
41. Craelius, W, Migdal, MW, Luessenhop, CP, Sugar, A, Mihalakis, I. Iron deposits surrounding multiple sclerosis plaques. Arch Pathol Lab Med. 1982;106(8):397–9.6896630Google Scholar
42. LeVine, SM. Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res. 1997; 760(1–2):298303.10.1016/S0006-8993(97)00470-89237552Google Scholar
43. Van Horssen, J, Schreibelt, G, Drexhage, J, et al. Severe oxidative damage in multiple sclerosis lesions coincides with antioxidant enzyme expression. Free Radic Biol Med. 2008; 45(12):1729–37.10.1016/j.freeradbiomed.2008.09.02318930811Google Scholar
44. Pender, MP, Greer, JM. Immunology of multiple sclerosis. Curr Allergy Asthma Rep. 2007; 7(4):285–92.10.1007/s11882-007-0043-x17547851Google Scholar
45. Grant, SM, Wiesiger, JA, Beard, JL, Cantorna, MT. Iron-deficient mice fail to develop autoimmune encephalomyelitis. J Nutr. 2003;133(8):2635–8.12888650Google Scholar
46. Mitchell, KM, Dotson, AL, Cool, KM, Chakrabarty, A, Benedict, SH, LeVine, SM. Deferiprone, an orally deliverable iron chelator, ameliorates experimental autoimmune encephalomyelitis. Mult Scler. 2007;13(9):1118–26.10.1177/135245850707891617967839Google Scholar
47. Varga, AW, Johnson, G, Babb, JS, Herbert, J, Grossman, RI, Inglese, M. White matter hemodynamic abnormalities precede subcortical gray matter changes in multiple sclerosis. J Neurol Sci. 2009; 282(1–2):2833.10.1016/j.jns.2008.12.03619181347Google Scholar
48. Rashid, W, Parkes, LM, Ingle, GT, et al. Abnormalities of cerebral perfusion in multiple sclerosis. J Neurol Neurosurg Psychiat. 2004;75(4):1288–93.10.1136/jnnp.2003.02602115314117Google Scholar
49. Law, M, Saindane, AM, Ge, Y, et al. Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology. 2004; 231(3):645–52.10.1148/radiol.231303099615163806Google Scholar
50. Wuerfel, J, Bellmann-Strobl, J, Brunecker, P, et al. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain. 2004;127 (Pt 1):111–19.10.1093/brain/awh00714570816Google Scholar
51. Drayer, B, Burger, P, Hurwitz, B, Dawson, S, Cain J. Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJR Am J Roentgenol. 1987; 149(2):357363.10.2214/ajr.149.2.3573496764Google Scholar
52. Neema, M, Stankiewicz, J, Arora, A, et al. T1- and T2- based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimag. 2007;17 Suppl 1:16S-21S.Google Scholar
53. Ge, Y, Jensen, JH, Lu, H, et al. Quantitative assessment of iron accumulation in deep gray matter of multiple sclerosis by magnetic field correlation imaging. AJNR Amer J Neuroradiol. 2007;28(9):1639–44.10.3174/ajnr.A0646Google Scholar
54. Haacke, EM, Makki, M, Ge, Y, et al. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Mag Res Imag 2009;29(3):537–44.10.1002/jmri.21676Google Scholar
55. Ceccarelli, A, Filippi, M, Neema, M, et al. T2 hypointensity in the deep grey matter of patients with benign multiple sclerosis. Mult Scler. 2009;15(6):678–86.10.1177/135245850910361119482861Google Scholar
56. Khalil, M, Enzinger, C, Langkammer, C, et al. Quantitative assessment of brain iron by R2* relaxometry in patients with clinically isolated syndrome and relapsing-remitting multiple sclerosis. Mult Scler. 2009;15(9):1048–54.10.1177/135245850910660919556316Google Scholar
57. Hammond, KE, Metcalf, M, Carvajal, , et al. Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron. Ann Neurol 2008;64(6):797–13.Google Scholar
58. Zivadinov, R, Schirda, C, Dwyer, MG, et al. Chronic cerebrospinal venous insufficiency and iron deposition on susceptibility-weighted imaging in patients with multiple sclerosis: a pilot case-control study. Int Angiol. 2010;29(2):158–75.20351672Google Scholar
59. Tan, IL, van Schijndel, RA, Pouwels, MA, et al. MR venography of multiple sclerosis. AJNR Am J Neuroradiol. 2000:21(6):1039–42.10871010Google Scholar
60. Tallantyre, EC, Brooks, MJ, Dixon, JE, et al. Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology. 2008;70(22):2076–8.10.1212/01.wnl.0000313377.49555.2eGoogle Scholar
61. Hojnacki, D, Zamboni, P, Lopez-Soriano, A, et al. Use of neck magnetic resonance venography, soppler sonography and selective venography for diagnosis of chronic cerebrospinal venous insufficiency: a pilot study in multiple sclerosis patients and healthy controls. Int Angiol. 2010;29(2):127–39.Google Scholar
62. Tartaglino, LM, Friedman, DP, Flanders, AE, et al. Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters. Radiology. 1995;195(3):725–32.10.1148/radiology.195.3.7754002Google Scholar
63. Aaslid, R, Newell, DW, Stooss, R, Sorteberg, W, Lindegaard, KF. Assessment of cerebral autoregulation dynamics from simultaneous arterial dynamics from simultaneous arterial and venous intracranial Doppler recordings in humans. Stroke. 1991;22(9):1148–54.10.1161/01.STR.22.9.1148Google Scholar
64. Stolz, E, Kaps, M, Korn, A, Babaccan, SS, Dorndorf, W. Transcranial color-coded duplex sonography of intracranial veins and sinuses of adults. Reference data from 130 volunteers. Stroke. 1999;30(5):1070–5.10.1161/01.STR.30.5.1070Google Scholar
65. Baumgartner, RW, Gonner, F, Arnold, M, Muri, RM. Transtemporal power- and frequency-based color-coded duplex sonography of cerebral veins and sinuses. AJNR Am J Neuroradiol. 1997;18 (9):1771–81.Google Scholar
66. Doepp, F, Schreiber, SJ, von Munster, T, et al. How does blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns. Neuroradiol. 2004;46(7):565–70.10.1007/s00234-004-1213-3Google Scholar
67. Silva, MA, Deen, KI, Fernando, DJS, Sheriffdeen, AH. The internal jugular veins valve may have a significant role in the prevention of venous reflux: evidence from live and cadaveric human subjects. Clin Physiol Funct Imag. 2002;22:202–5.10.1046/j.1475-097X.2002.00418.xGoogle Scholar
68. Brownlow, RL Jr, McKinney, WM. Ultrasonic evaluation of jugular venous valve competence. J Ultrasound Med. 1985; 4(4):169–72.Google Scholar
69. Akkawi, NM, Agosti, C, Borroni, B, et al. Jugular valve incompetence: a study using air contrast ultrasonography on a general population. J Ultrasound Med. 2002;21(7):747–51.Google Scholar
70. Chung, C-P, Hu, H-H. Jugular venous reflux. J Med Ultrasound. 2008;16(3):210–22.10.1016/S0929-6441(08)60050-8Google Scholar
71. Chou, CH, Chao, AC, Hu, HH. Ulrasonographic evaluation of vertebral venous valves. AJNR Am J Neuroradiol. 2002;23(8): 1418–20.12223389Google Scholar
72. Nedelmann, M, Eicke, BM, Dieterich, M. Functional and morphological criteria of internal jugular valve insufficiency as assessed by ultrasound. J Neuroimaging. 2005;15(1):70–5.10.1111/j.1552-6569.2005.tb00288.x15574577Google Scholar
73. Doepp, F, Schreiber, SJ. Benndorf, G, Radtke, A, Gallinat, J, Valdueza, JM. Venous drainage patterns in a case of pseudotumor cerebri following unilateral radical neck dissection. Acta Otolaryngol. 2003;123(8):994–7.14606605Google Scholar
74. Humphries, WE, Grossi, PM, Liethe, LG, et al. Ventriculoperitoneal shunt failure causing myelopathy in a patient with bilateral jugular vein occlusions. Case Report. J Neurosurg Spine. 2007;6(1):60–3.10.3171/spi.2007.6.1.6017233293Google Scholar
75. Huang, P, Yang, Y, Chen, R, et al. Successful treatment of cerebral venous thrombosis associated with bilateral internal jugular vein stenosis using direct thrombolysis and stenting: a case report. Kaohsiung J Med Sci. 2005;21(11):527–31.10.1016/S1607-551X(09)70162-716358556Google Scholar
76. Barrett, N, Spencer, S, McIvor, J, et al. Subclavian stenosis: a major complication of subclavian dialysis catheters. Nephrol Dial Transplant. 1998;3(4):423–5.Google Scholar
77. Schillinger, F, Schillinger, D, Montagnac, R, et al. Post catheterization vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant. 1991;6(10):722–4.10.1093/ndt/6.10.7221754109Google Scholar
78. Taal, MW, Chesterton, LJ, McIntyre, W. Venography at insertion of tunneled internal jugular vein catheters reveals significant occult stenosis. Nephrol Dial Transplant. 2004;19(6):1542–5.10.1093/ndt/gfh21615034155Google Scholar
79. MacRae, JM, Ahmed, A, Johnson, N, et al. Central vein stenosis: a common problem in patients on hemodialysis. ASAIO J. 2005;51(1):7781.10.1097/01.MAT.0000151921.95165.1E15745139Google Scholar
80. Hartmann, A, Mast, M, Stapf, C, Kock, H-C, Marx, P. Peripheral hemodialysis shunt with intracranial venous congestion. Case Reports. Stroke. 2001;32(12):2945–6.11740001Google Scholar
81. Orin, PR. Sonology demonstrates flow reversal within internal jugular vein secondary to occluded innominate vein and stenotic hemodialysis arteriovenous fistula. J Diag Med Sonol. 2002;18(6):405–8.10.1177/8756479302238397Google Scholar
82. Paksoy, Y, Genc, BO, Genc, E. Retrograde flow in the left inferior petrosal sinus and blood steal of the cavernous sinus associated with central vein stenosis: MR angiographic findings. AJNR Am J Neuroradiol. 2003;24(7):1364–8.12917128Google Scholar
83. Doepp, F, Bahr, D, John, M, Hoernig, S, Valdueza, JM, Schreiber, SJ. Internal jugular vein valve incompetence in COPD and primary pulmonary hypertension. J Clin Ultrasound. 2008;36(8):480–4.10.1002/jcu.2047018335510Google Scholar
84. Doepp, F, Valdueza, JM, Schreiber, SJ. Incompetence of internal jugular valve in patients with primary exertional headache: a risk factor? Cephalalgia. 2008;28:182–5.18021266Google Scholar
85. Nedelmann, M, Eicke, BM, Dieterich, M. Increased incidence of jugular valve insufficiency in patients with transient global amnesia. J Neurol. 2005;252(12):1482–6.10.1007/s00415-005-0894-915999232Google Scholar
86. Altamura, C, Vernieri, F. Internal jugular vein incompetence in transient global amnesia. More circumstantial evidence or the proof solving the mystery? Stroke. 2010;41(1):1.10.1161/STROKEAHA.109.56958219926834Google Scholar
87. Taylor, GA, Walker, LK. Intracranial venous system in newborns treated with extracorporeal membrane oxygenation: doppler ultrasound evaluation after ligation of right internal jugular vein. Radiology. 1999;183(2):453–6.Google Scholar
88. Wilkinson, N, Sood, S, Ham, SD, et al. Thrombosis associated with ventriculoatrial shunts. J Neurosurg Pediatr. 2008;2(4):286–91.10.3171/PED.2008.2.10.28618831666Google Scholar
89. Leriche, H, Aubin, ML, Abouker, J. [Cavo-spinal phlebography in myelopathies. Stenoses of internal jugular and azygous veins, venous compressions and thromboses.] [Article in French] Acta Radiol Suppl. 1976;347:415–7.207127Google Scholar
90. Anonymous. Retinal veins in multiple sclerosis. BMJ. 1972(16Dec):626.AMBIGUOUS 4645893,4645892,5013841Google Scholar
91. Rosales Carbella, J. [The significance of enlarged retinal veins in the diagnosis of multiple sclerosis: report of a patient] [Article in Spanish] Med Clin (Barc). 1981;77(1):30–2.7253759Google Scholar
92. Lightman, S, McDonald, WI, Bird, AC, et al. Retinal venous sheathing in optic neuritis. Its significance for the pathogenesis of multiple sclerosis. Brain. 1987;110 Pt 2:405–14.3567529Google Scholar
93. Bergan, JJ, Schmid-Schonbein, GW, Coleridge Smith, PD, Nicolaides, AN, Boisseau, MR, Eklof, B. Chronic venous disease. N Engl J Med. 2006;355(5):488–98.10.1056/NEJMra05528916885552Google Scholar
94. Zamboni, P, Menegatti, E, Bartolomei, I, et al. Intracranial venous haemodynamics in multiple sclerosis. Curr Neurovasc Res. 2007;4(4):252–8.10.2174/15672020778244629818045150Google Scholar
95. Zamboni, P, Menegatti, E1, Galeotti, R, et al. The value of cerebral Doppler venous haemodynamics in the assessment of multiple sclerosis. J Neurol Sci. 2009;282(1–2):21–7.10.1016/j.jns.2008.11.02719144359Google Scholar
96. Zamboni, P, Galeotti, R, Menegatti, E, et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiat. 2009;80(4):392–9.19060024Google Scholar
97. Zamboni, P, Galeotti, R, Menegatti, E, et al. A prospective open-label study of endovascular treatment of chronic cerebrospinal venous insufficiency. J Vasc Surg. 2009;50(6):1348–58.10.1016/j.jvs.2009.07.09619958985Google Scholar