Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T23:34:19.246Z Has data issue: false hasContentIssue false

Motor Neuron Degeneration in a 20-Week Male Fetus: Spinal Muscular Atrophy Type 0

Published online by Cambridge University Press:  02 December 2014

Harvey B. Sarnat
Affiliation:
Departments of Paediatrics, Pathology, University of Calgary, Medicine and Alberta Children's Hospital, Calgary, Alberta, Canada
Cynthia L. Trevenen
Affiliation:
Departments of Pathology, University of Calgary, Medicine and Alberta Children's Hospital, Calgary, Alberta, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Neuropathological changes in degenerating motor neurons are well documented in the term neonate with spinal muscular atrophy, but not at midgestation.

Methods:

Postmortem neuropathological examination was performed in a 20-week male fetus with a hypoplastic left cardiac anomaly.

Results:

Selective degeneration of spinal and hypoglossal motor neurons was an incidental finding. Degenerating motor neurons were not immunoreactive with neuronal nuclear antigen (NeuN) or neuron-specific enolase (NSE), as were the normal motor neurons. Synaptophysin reactivity was reduced around the soma of degenerating normal motor neurons. Ubiquitin and tau were expressed in degenerating motor neurons. Gliosis, inflammation and microglial activation were lacking in the ventral horns of the spinal cord. Laryngeal striated muscle was unaltered for age. No cerebral malformations or hypoxic-ischaemic changes were found.

Conclusion:

This case represents an early motor neuronal degeneration and corresponds to the recently described “type 0” spinal muscular atrophy. Lack of contractures is attributed to the early fetal age, since most muscular growth occurs in the second half of gestation.

Résumé:

RÉSUMÉ:Introduction:

Les alterations des neurons moteurs dégénératifs dans le nouveauné à terme sont bien documentés, mais pas en la gestation moyenne.

Méthodes:

On a realisé l'examination neuropathologique postmortem dans un foetus masculin de 20 semaines qui avait le syndrome d'hypoplasie du coeur gauche.

Résultats:

Nous avons trouvé une dégénération selective des neurons moteurs comme trouvaille fortuite. Los neurones moteurs dégénératifs ne sont pas inmunoréactifs avec l'antigen neuronale nucleaire (NeuN) ou l'enolase spécifique aux neurones, bien que les neurones moteurs bien conserves montrant ces reactivités. La synaptophysine est moins reactif au cours des neurones dégénératifs que dans les neurones moteurs normaux. L'expression d'ubiquitine et de tau aussi se trouve. Il n'y a pas du gliose, d'inflammation ou d'activation microgliale. Le muscle estrié paralaryngeal est normale a cette âgé. Les malformations cérébrales et les alterations hypoxiquesischémiques son absents.

Conclusion:

On propose que ce cas réprésent le changement pathologique plus tôt dans les neurones moteurs de l'atrophie spinale musculaire et corresponde au «type 0» recentement décrit. L'absence de contractures s'attribue a l'áge jeune foetaux puisque le croissement plus rapide du muscle a lieu dans la seconde moitié de gestation.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Dubowitz, V. Disorders of the lower motor neuron: the spinal muscular atrophies. In: Dubowitz, V, editor: Muscle disorders in childhood. London, UK: WB Saunders; 1995: p. 325-70.Google Scholar
2. Crawford, TO. Spinal muscular atrophies. In: Royden Jones, H Jr, De Vivo, DC, Darras, BT, editors. Neuromuscular disorders of infancy, childhood, and adolescence. A clinician’s approach. Amsterdam, Philadelphia: Elsevier Science; 2003: p. 145-66.Google Scholar
3. Sarnat, HB. Diseases of the motor unit. In: Menkes, JH, Sarnat, HB, Maria, BL, editors. Child neurology. 7th ed. Baltimore: Lippincott Williams & Wilkins; 2006: p. 969-1024.Google Scholar
4. Sarnat, HB. Neuromuscular disorders. In: Behrman, RE, Kliegman, RM, Jenson, HB, editors. Nelson textbook of pediatrics. 18th ed. Philadelphia: Saunders; 2007: in press.Google Scholar
5. Byers, RK, Banker, BQ. Infantile spinal muscular atrophy. Arch Neurol. 1961; 5:140-64.Google Scholar
6. MacLeod, MJ, Taylor, JE, Lunt, PW, Mathew, CG, Robb, SA. Prenatal onset spinal muscular atrophy. Eur J Paediatr Neurol. 1999; 3:65-72.Google Scholar
7. Dubowitz, V. Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. Eur J Paediatr Neurol. 1999; 3:49-51.Google Scholar
8. Kizilates, SU, Talim, B, Sel, K, Kose, G, Cagler, M. Severe lethal spinal muscular atrophy variant with arthrogryposis. Pediatr Neurol. 2005; 32:201-4.CrossRefGoogle ScholarPubMed
9. Nadeau, M, D’Anjou, GD, Debray, FG, Robitaille, Y, Simard, LR, Vanasse, M. A newborn with spinal muscular atrophy type 0 presenting with a clinicopathological picture suggestive of centronuclear myopathy. Can J Neurol Sci. 2005; 32:S45 (abstract); J Child Neurol. 2007; in press.Google Scholar
10. Sarnat, HB, Jacob, P, Jiménez, C. Atrophie spinale musculaire: l’évanouissement de la fluorescence a l’ARN des neurones moteurs en dégénérescence. Une étude à l’acridine-orange. Rev Neurol (Paris). 1989; 145:305-11.Google Scholar
11. Sarnat, HB. Ontogenesis of striated muscle. In: Polin, RA, Fox, WW, Abman, A, editors. Fetal and Neonatal Physiology. 3rd ed. Philadelphia: Saunders; 2004; 2: p. 1849-70.Google Scholar
12. Sarnat, HB. Commentary on pathology of spinal muscular atrophy. In: Gamstorp, I, Sarnat, HB, editors. Progressive spinal muscular atrophies. NY: Raven Press; 1984: p. 91-110.Google Scholar
13. Roy, N, McLean, MD, Besner-Johnston, A, Lefebvre, C, Salih, M, Carpten, JD, et al. Refined physical map of the spinal muscular atrophy gene (SMA) region at 5q13 based on YAC and cosmid continuous arrays. Genomics. 1995; 26:451-60.Google Scholar
14. Lefebvre, S, Burglen, L, Reboullet, S, Clermont, O, Burlet, P, Viollet, L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995; 80:155-65.CrossRefGoogle ScholarPubMed
15. Giavazzi, A, Setola, V, Simonati, A, Battaglia, G. Neuronal-specific roles of the survival motor neuron protein: evidence from survival motor neuron expression patterns in the developing human central nervous system. J Neuropathol Exp Neurol. 2006; 65:267-77.CrossRefGoogle ScholarPubMed
16. Mackenzie, IRA, Feldman, HH. Ubiquitin immunohistochemistry suggests classic motor neuron disease, motor neuron disease with dementia, and frontotemporal dementia of the motor neuron diseases type represent a clinicopathologic spectrum. J Neuropathol Exp Neurol. 2005, 64:730-9.CrossRefGoogle ScholarPubMed
17. Kamoshita, S, Takei, Y, Miyao, M, Yanagisawa, M, Kobayashi, S, Saito, K. Pontocerebellar hypoplasia associated with infantile motor neuron disease (Norman’s disease). Pediatr Pathol. 1990; 10:133-42.CrossRefGoogle ScholarPubMed
18. Deda, G, Caksen, H, Icagasioglu, D. A fatal case of cerebellar hypoplasia associated with anterior horn cell disease. Genet Counsel. 2003; 14:2533-6.Google Scholar
19. Barth, PG. Pontocerebellar hypoplasias: an overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Devel. 1993; 15:411-22.Google Scholar
20. Jones, KL. Smith’s recognizable patterns of human malformation, 6th ed. Philadelphia: WB Saunders; 2006: p. 188-9.Google Scholar
21. Sees, JN Jr, Towfighi, J, Robins, DB, Ladda, RL. Marden-Walker syndrome: neuropathologic findings in two siblings. Pediatr Pathol. 1990; 10:807-18.CrossRefGoogle ScholarPubMed
22. Pearn, J. Genetics of the spinal muscular atrophies. In: Gamstorp, I, Sarnat, HB, editors. Progressive spinal muscular atrophies. NY: Raven Press; 1984: p. 19-30.Google Scholar
23. Wong, VC, Chung, BHY, Li, S, Goh, W, Lee, SL. Mutation of gene in spinal muscular atrophy respiratory distress type I. Pediatr Neurol. 2006; 34:474-7.CrossRefGoogle ScholarPubMed
24. Moller, P, Moe, N, Saustad, OD, Skullerud, K, Velken, M, Berg, K, et al. Spinal muscular atrophy type I combined with atrial septal defect in three sibs. Clin Genet. 1990; 38:81-3.CrossRefGoogle ScholarPubMed
25. Mulleners, WM, van Ravenswaay, CMA, Gabreúls, FJM, Hamel, BCJ, van Oort, A, Sengers, RCA. Spinal muscular atrophy combined with congenital heart disease: a report of two cases. Neuropediatrics. 1996; 27:333-4.CrossRefGoogle ScholarPubMed
26. El-Matary, W, Kotagiri, S, Cameron, D, Peart, I. Spinal muscular atrophy type 1 (Werdnig-Hoffmann disease) with complex cardiac malformation. Eur J Pediatr. 2004; 163:331-2.CrossRefGoogle ScholarPubMed
27. Munsat, TL. Workshop report: International SMA collaboration. Neuromuscul Disord. 1991; 1:81.Google Scholar
28. Jouannic, J-M, Picone, O, Martinovic, J, Fermont, L, Dumez, Y, Donet, D. Diminutive fetal left ventricle at mid-gestation associated with persistent left superior vena cava and coronary sinus dilatation. Ultrasound Obstet Gynecol. 2003; 22:527-30.Google Scholar
29. Wagner, CL, Goldstein, M, Conradi, SE. Changing a diagnosis: the importance of neonatal autopsy. J Perinatol 2005; 25:69-71.Google Scholar
30. Sarnat, HB. Muscle pathology and histochemistry. Chicago: American Society of Clinical Pathologists Press; 1983: p. 35-43.Google Scholar
31. Hausmanowa-Petrusewicz, I. Spinal muscular atrophy. Infantile and juvenile types. Warsaw: U.S. Dept. of Commerce Translation and Publication. Springfield, VA; 1978: p. 52-64.Google Scholar
32. Fidzianska-Dolot, A, Hausmanowa-Petrusewicz, I. Morphology of the lower motor neuron and muscle. In: Gamstorp, I, Sarnat, HB, editors. Progressive spinal muscular atrophies. NY: Raven Press; 1984: p. 55-89.Google Scholar