Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T18:05:08.062Z Has data issue: false hasContentIssue false

iPhone-Based Teleradiology for the Diagnosis of Acute Cervico-Dorsal Spine Trauma

Published online by Cambridge University Press:  23 September 2016

Jayesh Modi
Affiliation:
Department of Radiology, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
Pranshu Sharma
Affiliation:
Department of Radiology, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
Alex Earl
Affiliation:
Department of Radiology, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
Mark Simpson
Affiliation:
Department of Radiology, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
J. Ross Mitchell
Affiliation:
Department of Radiology, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
Mayank Goyal*
Affiliation:
Department of Radiology, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
*
Radiology and Clinical Neurosciences, Department of Radiology, Foothills Medical Centre, University of Calgary, 1403, 29th St. NW, Calgary, Alberta, T2N 2T9, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To assess the feasibility of iPhone-based teleradiology as a potential solution for the diagnosis of acute cervico-dorsal spine trauma.

Materials and Methods:

We have developed a solution that allows visualization of images on the iPhone. Our system allows rapid, remote, secure, visualization of medical images without storing patient data on the iPhone. This retrospective study is comprised of cervico-dorsal computed tomogram (CT) scan examination of 75 consecutive patients having clinically suspected cervico-dorsal spine fracture. Two radiologists reviewed CT scan images on the iPhone. Computed tomogram spine scans were analyzed for vertebral body fracture and posterior elements fractures, any associated subluxation-dislocation and cord lesion. The total time taken from the launch of viewing application on the iPhone until interpretation was recorded. The results were compared with that of a diagnostic workstation monitor. Inter-rater agreement was assessed.

Results:

The sensitivity and accuracy of detecting vertebral body fractures was 80% and 97% by both readers using the iPhone system with a perfect inter-rater agreement (kappa:1). The sensitivity and accuracy of detecting posterior elements fracture was 75% and 98% for Reader 1 and 50% and 97% for Reader 2 using the iPhone. There was good inter-rater agreement (kappa: 0.66) between both readers. No statistically significant difference was noted between time on the workstation and the iPhone system.

Conclusion:

iPhone-based teleradiology system is accurate in the diagnosis of acute cervico-dorsal spinal trauma. It allows rapid, remote, secure, visualization of medical images without storing patient data on the iPhone.

Résumé

RésuméObjectif:

Le but de l'étude était d'évaluer la faisabilité de la téléradiologie basée sur le iPhone comme ressource pour le diagnostic du traumatisme de la colonne cervicale et dorsale.

Méthodologie:

Nous avons développé une ressource qui permet la visualisation d'images sur le iPhone. Notre système permet la visualisation rapide, à distance et sécurisée d'images médicales sans sauvegarder les informations concernant le patient dans le iPhone. Cette étude rétrospective inclut l'examen de tomodensitométrie cervico-dorsale de 75 patients consécutifs chez qui on soupçonnait cliniquement une fracture de la colonne cervico-dorsale. Deux radiologistes ont révisé les tomodensitométries sur le iPhone pour détecter les fractures des corps vertébraux et des éléments postérieurs, ainsi que les subluxations-dislocations et les lésions de la moelle épinière associées. Le temps total à partir du lancement de l'application sur le iPhone jusqu'à l'interprétation a été noté. Les résultats ont été comparés à ceux obtenus à un poste de travail utilisé pour le diagnostic et la concordance entre les observateurs a été évaluée.

Résultats:

La sensibilité et l'exactitude de détection des fractures du corps vertébral étaient de 80% et 97% respectivement pour les deux observateurs lorsqu'ils utilisaient le système iPhone, et la concordance inter-observateurs était parfaite (kappa : 1). La sensibilité et l'exactitude de détection pour les fractures des éléments postérieurs étaient de 75% et 98% respectivement pour l'observateur 1 et de 50% et 97% pour l'observateur 2 sur le iPhone. La concordance inter-observateurs était bonne (kappa : 0,66) entre les deux observateurs. Aucune différence significative au point de vue statistique n'a été notée quant au temps consacré au poste de travail et au système iPhone.

Conclusion:

Le système de téléradiologie basé sur le iPhone pour le diagnostic du traumatisme aigu de la colonne cervico-dorsale est exact. Il permet une visualisation rapide, à distance et sécurisée des images médicales sans sauvegarde des données du patient dans le iPhone.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Kim, DK, Yoo, SK, Park, JJ, Kim, SH. PDA-phone-based instant transmission of radiological images over a CDMA network by combining the PACS screen with a Bluetooth-interfaced local wireless link. J Digit Imaging. 2007 Jun;20(2):131–9.10.1007/s10278-007-9002-217505870Google Scholar
2. Yamada, M, Watarai, H, Andou, T, Sakai, N. Emergency image transfer system through a mobile telephone in Japan: technical note. Neurosurgery. 2003 Apr;52(4):986–8; discussion 8–90.10.1227/01.NEU.0000053152.45258.7412657199Google Scholar
3. Yamamoto, LG, Williams, DR. A demonstration of instant pocket wireless CT teleradiology to facilitate stat neurosurgical consultation and future telemedicine implications. Am J Emerg Med. 2000 Jul;18(4):423–6.10.1053/ajem.2000.631610919531Google Scholar
4. Yaghmai, V, Kuppuswami, S, Berlin, JW, Salehi, SA. Evaluation of personal digital assistants as an interpretation medium for computed tomography of patients with intracranial injury. Emerg Radiol. 2003 Oct;10(2):87–9.10.1007/s10140-003-0300-915290513Google Scholar
5. Yaghmai, V, Salehi, SA, Kuppuswami, S, Berlin, JW. Rapid wireless transmission of head CT images to a personal digital assistant for remote consultation. Acad Radiol. 2004 Nov;11(11):1291–3.10.1016/j.acra.2004.07.02015561577Google Scholar
6. Fischer, S, Stewart, TE, Mehta, S, Wax, R, Lapinsky, SE. Handheld computing in medicine. J Am Med Inform Assoc. 2003 Mar-Apr;10(2):139–49.10.1197/jamia.M118012595403Google Scholar
7. Ebell, M, Rovner, D. Information in the palm of your hand. J Fam Pract. 2000 Mar;49(3):243–51.10735484Google Scholar
8. Toomey, RJ, Ryan, JT, McEntee, MF, Evanoff, MG, Chakraborty, DP, McNulty, JP, et al. Diagnostic efficacy of handheld devices for emergency radiologic consultation. AJR Am J Roentgenol. 2010 Feb;194(2):469–74.10.2214/AJR.09.341820093611Google Scholar
9. McLeod, TG, Ebbert, JO, Lymp, JF. Survey assessment of personal digital assistant use among trainees and attending physicians. J Am Med Inform Assoc. 2003 Nov-Dec;10(6):605–7.10.1197/jamia.M131312925551Google Scholar
10. Boonn, WW, Flanders, AE. Informatics in radiology (infoRAD): survey of personal digital assistant use in radiology. Radiographics. 2005 Mar-Apr;25(2):537–41.10.1148/rg.25204517315798069Google Scholar
11. Flanders, AE, Wiggins, RH, 3rd, Gozum, ME. Handheld computers in radiology. Radiographics. 2003 Jul-Aug;23(4):1035–47.10.1148/rg.23403501112853679Google Scholar
12. Reponen, J, Ilkko, E, Jyrkinen, L, Tervonen, O, Niinimaki, J, Karhula, V, et al. Initial experience with a wireless personal digital assistant as a teleradiology terminal for reporting emergency computerized tomography scans. J Telemed Telecare. 2000;6(1):45–9.10824391Google Scholar
13. Raman, B, Raman, R, Raman, L, Beaulieu, CF. Radiology on handheld devices: image display, manipulation, and PACS integration issues. Radiographics. 2004 Jan-Feb;24(1):299310.10.1148/rg.24103512714730053Google Scholar
14. Kondo, Y. [Medical image transfer for emergency care utilizing internet and mobile phone]. Nippon Hoshasen Gijutsu Gakkai Zasshi. 2002 Oct;58(10):1393–401.Google Scholar
15. Johnston, WK, 3rd, Patel, BN, Low, RK, Das, S. Wireless teleradiology for renal colic and renal trauma. J Endourol. 2005 Jan-Feb;19(1):32–6.10.1089/end.2005.19.3215735379Google Scholar
16. Salo, S, Salo, H, Liisanantti, A, Reponen, J. Data transmission in dental identification of mass disaster victims. J Forensic Odontostomatol. 2007 Jun;25(1):1722.17577974Google Scholar
17. Aebi, M, Mohler, J, Zach, GA, Morscher, E. Indication, surgical technique, and results of 100 surgically-treated fractures and fracture-dislocations of the cervical spine. Clin Orthop Relat Res. 1986 Feb(203):244–57.3955986Google Scholar
18. Wiberg, J, Hauge, HN. Neurological outcome after surgery for thoracic and lumbar spine injuries. Acta Neurochir (Wien). 1988;91(3–4):106–12.10.1007/BF014245633407453Google Scholar
19. Wolf, A, Levi, L, Mirvis, S, Ragheb, J, Huhn, S, Rigamonti, D, et al. Operative management of bilateral facet dislocation. J Neurosurg. 1991 Dec;75(6):883–90.10.3171/jns.1991.75.6.08831941117Google Scholar
20. Hadley, MN, Fitzpatrick, BC, Sonntag, VK, Browner, CM. Facet fracture-dislocation injuries of the cervical spine. Neurosurgery. 1992 May;30(5):661–6.10.1227/00006123-199205000-000011584374Google Scholar
21. Van Goethem, JW, Maes, M, Ozsarlak, O, van den Hauwe, L, Parizel, PM. Imaging in spinal trauma. Eur Radiol. 2005 Mar;15(3):582–90.10.1007/s00330-004-2625-515696292Google Scholar