Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T00:51:53.564Z Has data issue: false hasContentIssue false

Intra-arterial Thrombolysis for Retinal Artery Occlusion: The Calgary Experience

Published online by Cambridge University Press:  10 January 2017

J.A. Pettersen*
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
M.D. Hill
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada Department of Internal Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
A.M. Dechuck
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
W. Morrish
Affiliation:
Department of Radiology, University of Calgary, Calgary, AB, Canada
M.E. Hudon
Affiliation:
Department of Radiology, University of Calgary, Calgary, AB, Canada
W. Hu
Affiliation:
Department of Radiology, University of Calgary, Calgary, AB, Canada
J. Wong
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
P.A. Barber
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
A.M. Buchan
Affiliation:
Department of Clinical Geratology, University of Oxford, Oxford, England
*
Department of Clinical Neurosciences, 12th floor, Foothills Medical Centre, 1403-29th St. NW, Calgary, Alberta, Canada T2N 2T9
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Introduction:

Retinal artery occlusion represents a medical emergency with poor prognosis for visual recovery. Spontaneous improvement is estimated to occur in less than 15% of central retinal artery occlusion (CRAO) cases and conventional treatments have provided only limited benefit. Intra-arterial thrombolysis has been reported as a potentially efficacious and safe treatment.

Methods:

We performed a retrospective chart review of all retinal artery occlusion cases treated with intra-arterial recombinant tissue-type plasminogen activator (rtPA) from January 1998 to May 2004. Patients received Goldmann perimetry visual field testing at a variable interval following the procedure (2 days-2.5 years). Visual acuity (VA) was re-assessed in May 2004.

Results:

Eight cases (59-77 years) were treated for CRAO, 6-18 hours post-onset with intra-arterial rtPA (10-20 mg over 15-60 minutes); one case of branch occlusion (BRAO) was treated with 30 mg rtPA over 75 minutes, 12 hours post-onset. Among the six patients with CRAO assessed in clinic, three experienced improvement in VA by two or more gradations (Snellen lines); three improved by one gradation. However, none achieved a final VA better than 20/300. The case of branch occlusion improved to a VA of 20/20. All patients had residual monocular field defects.

Conclusion:

Our findings reveal a limited benefit for intra-arterial tPA compared to the rate of spontaneous improvement and conventional forms of therapy for retinal artery occlusion.

Résumé:

RÉSUMÉ:Introduction:

L’occlusion artérielle rétinienne constitue une urgence médicale dont le pronostic de récupération visuelle est mauvais. Une amélioration spontanée s’observe chez moins de 15% des cas d’occlusion de l’artère centrale de la rétine (OACR) et le traitement conventionnel est peu efficace. La thrombolyse intra-artérielle serait efficace et sûre.

Méthodes:

Nous avons effectué une révision rétrospective des dossiers de tous les patients ayant subi une occlusion d’artère rétinienne traitée par l’activateur du plasminogène tissulaire recombinant (rtPA) entre janvier 1998 et mai 2004. Le champ visuel des patients a été évalué par périmétrie de Goldmann à différents intervalles suite à la thrombolyse (2 jours à 2,5 ans). L’acuité visuelle (AV) a été réévaluée en mai 2004.

Résultats:

Huit patients, âgés de 59 à 77 ans, ont été traités pour une OACR entre 6 et 18 heures après le début des symptômes au moyen de rtPA intra-artériel (10 à 20 mg sur une période de 15 à 60 minutes). Un cas d’occlusion d’une branche de cette artère (OBAR) a reçu 30 mg de rtPA sur une période de 75 minutes 12 heures après le début des symptômes. Trois de 6 patients ayant subi une OACR évaluée à la clinique ont eu une amélioration de leur AV de deux lignes de Snellen ou plus ; trois ont eu une amélioration d‘une ligne. Cependant aucun n’a recouvré une AV finale meilleure que 20/300. Le cas d’OBAR a recouvré une AV de 20/20. Tous les patients avaient des déficits du champ visuel monoculaire résiduel.

Conclusions:

Chez nos patients, le bénéfice du traitement par le rtPA intra-artériel était limité comparé au taux d’amélioration spontanée et aux résultats du traitement conventionnel de l’occlusion artérielle rétinienne.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2005

References

1. Atebara, N, Brown, GC, Cater, J. Efficacy of anterior chamberparacentesis and carbogen in treating acute nonarteritic central retinal artery occlusion. Ophthalmology 1995;102:20292035.Google Scholar
2. Ros, M, Magargal, LE, Uram, M. Branch retinal-artery obstruction: areview of 201 eyes. Ann Ophthalmol 1989;21:103107.Google Scholar
3. Brown, G, Magargal, LE, Shields, JA, Goldberg, RE, Walsh, PN. Retinal arterial obstruction in children and young adults. Ophthalmology 1981;88:1825.Google Scholar
4. Hayreh, S, Weingeist, TA. Experimental occlusion of the centralartery of the retina: retinal tolerance time to acute ischaemia. Br J Ophthalmol 1980;64:818825.Google Scholar
5. Hayreh, S, Kolder, HE, Weingeist, TA. Central retinal artery occlusionand retinal tolerance time. Ophthalmology 1980;87:7578.Google Scholar
6. Duker, J, Brown, GC. Recovery following acute obstruction of theretinal and choroidal circulations: a case history. Retina 1988;8:257260.Google Scholar
7. Augsburger, J, Magargal, LE. Visual prognosis following treatmentof acute central retinal artery obstruction. Br J Ophthalmol 1980;64:913917.Google Scholar
8. Beatty, S, Au Eong, KG. Acute occlusion of the retinal arteries:Current concepts and recent advances in diagnosis andmanagement. J Accid Emerg Med 2000;17:324329.Google Scholar
9. Fraser, S, Siriwardena, D. Interventions for acute non-arteritic centralretinal artery occlusion. Cochrane Database Syst Rev 2003;1.Google Scholar
10. Mueller, A, Neubauer, AS, Schaller, U, Kamprik, A. Evaluation ofminimally invasive therapies and rationale for a prospective randomized trial to evaluate selective intra-arterial lysis for clinically complete central retinal artery occlusion. Arch Ophthalmol 2003;121:13771381.Google Scholar
11. Schmidt, D, Schumacher, M, Wakhloo, AK. Microcatheter urokinaseinfusion in central retinal artery occlusion. Am J Ophthalmol 1992;113:429434.CrossRefGoogle Scholar
12. Schumacher, M, Schmidt, D, Wakhloo, AK. Intra-arterial fibrinolytictherapy in central retinal artery occlusion. Neuroradiology 1993;35:600605.CrossRefGoogle ScholarPubMed
13. Wirostko, W, Pulido, JS, Hendrix, LE. Selective thrombolysis ofcentral retinal artery occlusion without long-term systemic heparinization. Surg Neurol 1998;50:408410.Google Scholar
14. Weber, J, Remonda, L, Mattle, H, Koerner, U, et al. Selective intra-arterial fibrinolysis of acute central retinal artery occlusion. Stroke 1998;29: 20762079.Google Scholar
15. Richard, G, Lerche, R, Knospe, V, Zeumer, H. Treatment of retinalarterial occlusion with local fibrinolysis using recombinant tissue plasminogen activator. Ophthalmology 1999;106:768773.CrossRefGoogle Scholar
16. Schmidt, D, Schumacher, M. Stage-dependent efficacy of intra-arterial fibrinolysis in central retinal artery occlusion (CRAO). Neuro-ophthalmology 1998;20:125141.Google Scholar
17. Padolecchia, R, Puglioli, M, Ragone, MC, Romani, A, Collavoli, PL. Superselective intraarterial fibrinolysis in central retinal arteryocclusion. Am J Neuroradiol 1999;20:565567.Google Scholar
18. Schmidt, D, Schulte-Monting, J, Schumacher, M. Prognosis of centralretinal artery occlusion: Local intraarterial fibrinolysis versus conservative treatment. Am J Neuroradiol 2002;23:13011307.Google Scholar
19. Arnold, M, Koerner, U, Remonda, L, et al. Comparison of intra-arterial thrombolysis with conventional treatment in patients with acute central retinal artery occlusion. J Neurol Neurosurg Psychiatry 2005;76:196199.Google Scholar
20. Kattah, J, Wang, DZ, Reddy, C. Intravenous recombinant tissue-typeplasminogen activator thrombolysis in treatment of central retinal artery occlusion. Arch Ophthalmol 2002;120:12341236.Google Scholar
21. Mames, R, Shugar, JK, Levy, L, Brasington, A, Margo, CE. Peripheralthrombolytic therapy for central retinal artery occlusion. Arch Ophthalmol 1995;113:1094.Google Scholar
22. Kase, C, O’Neal, AM, Fisher, M, Girgis, GN, Ordia, JL. Intracranialhemorrhage after use of tissue plasminogen activator for coronary thrombolysis. Ann Intern Med 1990;112:1721.Google Scholar
23. Brott, T, Broderick, J, Kothari, R. Thrombolytic therapy for stroke. Curr Opin Neurol 1994;7:2535.Google Scholar
24. Beatty, S, Au Eong, KG. Local intra-arterial fibrinolysis for acuteocclusion of the central retinal artery: A meta-analysis of the published data. Br J Ophthalmol 2000;84:914916.Google Scholar
25. Hayreh, S. Retinal arterial occlusion with LIF using rtPA. [Letter tothe editor]. Ophthalmology 1999;106(7):12361239.Google Scholar
26. Arruga, J SM. Ophthalmologic findings in 70 patients with evidenceof retinal embolism. Ophthalmology 1982;89:13361347.Google Scholar
27. Alexandrov, A, Molina, CA, Grotta, JC, et al. Ultrasound-enhancedsystemic thrombolysis for acute ischemic stroke. N Engl J Med 2004;351:21702178.CrossRefGoogle ScholarPubMed