Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T15:48:07.408Z Has data issue: false hasContentIssue false

In Situ Cranioplasty for Hyperostosing Meningiomas of the Cranial Vault

Published online by Cambridge University Press:  02 December 2014

Orin Bloch
Affiliation:
Department of Neurological Surgery, University of California, San Francisco California, USA
Michael W. McDermott*
Affiliation:
Department of Neurological Surgery, University of California, San Francisco California, USA
*
505 Parnassus Avenue, Box 0112, San Francisco, California, 94143-0112, USA
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

Hyperostosis of the bone overlying meningiomas has been reported in up to 50% of cases. The skull becomes infiltrated by meningothelial tumor cells, necessitating removal of the hypertrophied bone to achieve a complete tumor resection. Unfortunately, aesthetic reconstruction of large bony defects can pose a significant challenge intra-operatively. Custom cranioplasty implants are very expensive and can only be fabricated after the bony defect exists, requiring a second surgery for implantation. Although numerous composite materials exist to repair the defects at the time of tumor resection, the challenge is to create an implant that fits appropriately without shifting and approximates the natural curvature of the skull. We have developed a technique for an “in situ cranioplasty” using a composite construct with strength in compression and tension.

Technique:

After the skull is reshaped by shaving down part of the hyperostotic bone, titanium mesh is molded to the surface of the skull and screwed into the surrounding normal bone. The bone flap is then removed by drilling a trough at the outer margin of the tumor-involved skull and removing a ring of normal surrounding bone. The central portion of tumor involved skull is then craniectomized. The mesh can be reapplied and the full thickness of the central bone can be reconstructed with polymethylmethacrylate, yielding a solid construct perfectly matched to the patient's natural head shape.

Conclusion:

This novel technique yields a sturdy, aesthetic, and cost-effective result which can be used to address any cranial vault defect at the time of tumor resection.

Résumé:

Résumé:Objectif:

Une hyperostose de l'os susjacent a été rapportée dans près de 50% des cas de méningiome. Le crâne est infiltré par des cellules méningothéliales tumorales ce qui requiert une ablation de l'os hypertrophié pour assurer une résection complète de la tumeur. Malheureusement, une reconstruction esthétique peut constituer un défi de taille lors de la chirurgie lorsque la résection osseuse est importante. Les implants faits sur mesure sont très coûteux et ne peuvent être fabriqués qu'après la chirurgie, ce qui nécessite une seconde intervention. Bien qu'il existe plusieurs composites qui peuvent être utilisés au moment de la résection tumorale, c'est un défi de créer un implant bien adapté et stable, dont la courbure s'apparente à celle du crâne. Nous avons développé une technique de “cranioplastie in situ” utilisant un montage de composite avec propriétés en tension et en résistance.

Technique:

Après que le crâne ait été remodelé par rasage d'une partie de l'hyperostose, un treillis de titane est moulé à la surface du crâne et vissé dans l'os normal adjacent. Le lambeau osseux est ensuite réséqué après avoir foré une gouttière au bord externe de l'os infiltré par la tumeur, en s'assurant d'enlever un anneau osseux normal à la périphérie. La portion centrale de l'os infiltré par la tumeur est ensuite réséquée. Le treillis peut alors être réappliqué et l'os central peut être reconstruit dans sa pleine épaisseur au moyen de polyméthylméthacrylate, produisant ainsi un montage solide qui est parfaitement apparié à la forme naturelle de la tête du patient.

Conclusion:

Cette technique nouvelle donne un résultat solide, esthétique et rentable qui peut être utilisée pour traiter toute brèche à la voûte crânienne lors d'une résection tumorale.

Type
Original Article
Copyright
Copyright © Canadian Neurological Sciences Federation 2011

References

1 Brissaud, Lerebaoullet P. Deux cas d'hemicraniose. Rev Neurol. 1903;11:504–37.Google Scholar
2 Cushing, H. The cranial hyperostoses produced by meningeal endotheliomas. Arch Neurol Psychiatry. 1922;8:139–54.CrossRefGoogle Scholar
3 Cushing, H, Eisenhardt, L. Meningiomas: their classification, regional behavior, life history and surgical end results. Springfield: Charles C Thomas; 1938.Google Scholar
4 Sosman, M, Putnam, T. Roentgenological aspects of brain tumorsmeningiomas. AJR Am J Roentgenol. 1925;13:112.Google Scholar
5 Pieper, DR, Al-Mefty, O, Hanada, Y, Buechner, D. Hyperostosis associated with meningioma of the cranial base: secondary changes or tumor invasion. Neurosurgery. 1999;44(4):7426; discussion 6-7.Google Scholar
6 Bonnal, J, Thibaut, A, Brotchi, J, Born, J. Invading meningiomas of the sphenoid ridge. J Neurosurg. 1980;53(5):587–99.CrossRefGoogle ScholarPubMed
7 Simpson, D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry. 1957;20(1): 2239.CrossRefGoogle ScholarPubMed
8 Adegbite, AB, Khan, MI, Paine, KW, Tan, LK. The recurrence of intracranial meningiomas after surgical treatment. J Neurosurg. 1983;58(1):51–6.CrossRefGoogle ScholarPubMed
9 Mirimanoff, RO, Dosoretz, DE, Linggood, RM, Ojemann, RG, Martuza, RL. Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg. 1985;62(1):1824.CrossRefGoogle ScholarPubMed
10 Stafford, SL, Perry, A, Suman, VJ, et al. Primarily resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc. 1998;73 (10):936–42.CrossRefGoogle Scholar
11 Fodstad, H, Love, JA, Ekstedt, J, Friden, H, Liliequist, B. Effect of cranioplasty on cerebrospinal fluid hydrodynamics in patients with the syndrome of the trephined. Acta Neurochir (Wien). 1984;70(1–2):2130.CrossRefGoogle ScholarPubMed
12 Stiver, SI, Wintermark, M, Manley, GT. Reversible monoparesis following decompressive hemicraniectomy for traumatic brain injury. J Neurosurg. 2008;109(2):245–54.CrossRefGoogle ScholarPubMed
13 Bikmaz, K, Mrak, R, Al-Mefty, O. Management of bone-invasive, hyperostotic sphenoid wing meningiomas. J Neurosurg. 2007; 107(5):905–12.Google Scholar
14 Chiarini, L, Figurelli, S, Pollastri, G, et al. Cranioplasty using acrylic material: a new technical procedure. J Craniomaxillofac Surg. 2004;32(1):59.CrossRefGoogle ScholarPubMed
15 Lee, SC, Wu, CT, Lee, ST, Chen, PJ. Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci. 2009;16(1):5663.CrossRefGoogle ScholarPubMed
16 Stelnicki, EJ, Ousterhout, DK. Prevention of thermal tissue injury induced by the application of polymethylmethacrylate to the calvarium. J Craniofac Surg. 1996;7(3):1925.Google Scholar
17 Fathi, AR, Marbacher, S, Lukes, A. Cost-effective patient-specific intraoperative molded cranioplasty. J Craniofac Surg. 2008;19 (3):777–81.Google Scholar
18 Gibbons, KJ, Hicks, WL Jr., Guterman, LR. A technique for rigid fixation of methyl methacrylate cranioplasty: the vault-locking method. Surg Neurol. 1999;52(3):310–14; discussion 4-5.CrossRefGoogle ScholarPubMed
19 Raja, AI, Linskey, ME. In situ cranioplasty with methylmethacrylate and wire lattice. Br J Neurosurg. 2005;19(5):4169.Google Scholar