Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T06:31:47.264Z Has data issue: false hasContentIssue false

Human Autologous In Vitro Models of Glioma Immunogene Therapy Using B7-2, GM-CSF, and IL12

Published online by Cambridge University Press:  02 December 2014

Ian F. Parney
Affiliation:
Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada
Maxine A. Farr-Jones
Affiliation:
Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada
Kevin Kane
Affiliation:
Department of Surgery and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
Lung-Ji Chang
Affiliation:
Department of Surgery and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
Kenneth C. Petruk
Affiliation:
Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12).

Methods:

A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 (51Cr) release assay.

Results:

Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2, GM-CSF, and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells.

Conclusion:

PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of tumor subclones with limited antigenic spectra during retrovirus-mediated gene transfer.

Résumé:

RÉSUMÉ:Introduction:

La thérapie immunogène dans le traitement du cancer est basée sur la vaccination au moyen de cellules tumorales autologues irradiées et transfectée avec des gènes immunostimulants. Nous avons stimulé des lymphocytes au moyen de cellules de gliome humain autologue transfectées avec B7-2, le facteur de croissance des colonies de granulocytes-macrophages (GM-CSF) et/ou lèinterleukine-12 (IL12) afin de définir une stratégie optimale de thérapie immunogène du gliome.

Méthodes:

Une culture de cellules de gliome humain (Ed147.BT) a été transfectée avec B7-2, GM-CSF et/ou IL12 au moyen de vecteurs rétroviraux. Des monocytes provenant de sang périphérique autologue (MSP) ont été co-cultivés seulement avec des cellules transfectées irradiées ou avec une combinaison de cellules de type sauvage irradiées et de cellules transfectées. La prolifération des monocytes du sang périphérique était déterminée par des décomptes cellulaires sériés. Le phénotype des monocytes du sang périphérique était évalué par cytométrie de flux pour CD4, CD8 et CD16. La cytotoxicité anti-tumorale était déterminée par le test de libération du chrome-51.

Résultats:

Le décompte des monocytes du sang périphérique a diminué pendant la stimulation primaire, mais les cellules tumorales exprimant B7-2 ou GM-CSF ont invariablement causé une prolifération secondaire. Les tumeurs exprimant B7-2 et GM-CSF ou B7-2, GM-CSF et IL12 ont invariablement augmenté le pourcentage des MSP CD8+ (T cytotoxiques) et CD16+ (tueurs naturels). Il est intéressant de noter que la cytotoxicité antitumorale était supérieurs à celle des MSP stimulés seulement par la tumeur de type sauvage quand les MSP étaient stimulés par la tumeur de type sauvage et les cellules transfectées avec B7-2/GM-CSF, mais pas avec IL12.

Conclusions:

Tel que prévu, la prolifération et le phénotype des MSP sont modifiés par l’exposition à des cellules tumorales transfectées avec des gènes immunostimulants. Cependant, les cellules tumorales transfectées seules ne stimulent pas une cytotoxicité antitumorale supérieure à celle de la tumeur de type sauvage. Seulement les cellules transfectées avec B7-2/GM-CSF combinées aux cellules de type sauvage ont provoqué une augmentation de la cytotoxicité, ce qui reflète possiblement une sélection de sous-clones tumoraux possédant un spectre antigénique limité pendant le transfert génique médié par le rétrovirus.

Type
Experimental Neurosciences
Copyright
Copyright © Canadian Neurological Sciences Federation 2002

References

1. Kornblith, PK, Welch, WC, Bradley, MK. The future therapy forglioblastoma. Surgical Neurol 1993; 39: 538543.CrossRefGoogle Scholar
2. Yung, WKA. New approaches to molecular therapy of brain tumors.Curr Op Neurol 1994; 7: 501505.Google Scholar
3. Ettinghausen, SE, Rosenberg, SA. Immunotherapy and gene therapyof cancer. Adv Surg 1995; 28: 223254.Google Scholar
4. Parney, IF, Hao, C, Petruk, KC. Glioma immunology andimmunotherapy: a review. Neurosurgery 2000; 46: 778792.Google Scholar
5. Parney, IF, Farr-Jones, MA, Chang, L-J, Petruk, KC. Human gliomaimmunobiology in vitro: implications for immunogene therapy. Neurosurgery 2000; 46: 11691178.CrossRefGoogle ScholarPubMed
6. Siepl, C, Bodmer, S, Frei, K, et al. The glioblastoma derived T-cellsuppressor factor/transforming growth factor beta 2 inhibits T-cell growth without affecting the interaction of interleukin-2 withits receptor. Eur J Immunol 1988; 18: 593600.CrossRefGoogle Scholar
7. Kuppner, M, Hamou, M, Sawamura, Y, Bodmer, S, de Tribolet, N. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg 1989; 71: 211217.CrossRefGoogle ScholarPubMed
8. Bodmer, S, Strommer, K, Frei, K, et al. Immunosuppression andtransforming growth factor beta in glioblastoma: preferential production of transforming growth factor beta 2. J Immunol 1989; 143: 32223229.Google Scholar
9. Fontana, A, Kristensen, F, Dubs, R, Gemsa, D, Weber, E. Production ofprostaglandin E and interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J Immunol 1982; 129: 24132419.CrossRefGoogle Scholar
10. Sawamura, Y, Diserens, A-C, de Tribolet, N. In vitro Prostaglandin E2production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J Neurooncol 1990; 9: 125130.Google Scholar
11. Hao, C, Parney, IF, Ramsay, DA, et al. Cytokine and cytokinereceptor mRNA expression in human glioblastoma tumors and cell lines. Acta Neuropathol (Berl) 2001; In Press.Google Scholar
12. Plate, KH, Risau, W. Angiogenesis in malignant gliomas. Glia 1995; 15: 339347.CrossRefGoogle ScholarPubMed
13. Wesseling, P, Ruiter, DJ, Burger, PC. Angiogenesis in brain tumors;pathological and clinical aspects. J Neurooncol 1997; 32: 253265.CrossRefGoogle ScholarPubMed
14. Grabilovich, DI, Chen, HL, Girgis, KR, et al. Production of vascularendothelial growth factor by human tumors inhibits thefunctional maturation of dendritic cells. Nature Med 1996; 2: 10961103.Google Scholar
15. Fakhrai, H, Dorigo, O, Shawler, DL, et al. Eradication of establishedintracranial rat gliomas by transforming growth factor betaantisense gene therapy. PNAS 1996; 93: 29092914.Google Scholar
16. Dranoff, G, Jaffee, E, Lazenby, A, et al. Vaccination with irradiatedtumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific and long lasting anti-tumor immunity. PNAS 1993; 90: 35393543.Google Scholar
17. Sampson, JH, Archer, GE, Ashley, DM, et al. Subcutaneousvaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. PNAS 1996; 93: 1039910404.Google Scholar
18. Yu, JS, Burwick, JA, Dranoff, G, Breakefield, XO. Gene therapy formetastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 1997; 8: 10651072.Google Scholar
19. Parney, IF, Petruk, KC, Zhang, C, et al. GM-CSF and B7-2combination immunogene therapy in an allogeneic hu-PBL-SCID/beige mouse-human glioblastoma multiforme model. HumGene Ther 1997; 8: 10731085.Google Scholar
20. Parney, IF, Farr-Jones, MA, Koshal, A, Chang, L-J, Petruk, KC. Human brain tumor cell culture characterization following immunostimulatory gene transfer. Neurosurgery 2002; In press.Google Scholar
21. Gainer, AL, Young, ATL, Parney, IF, Petruk, KC, Elliott, JF. Gene-guntransfection of human glioma and melanoma cell lines with genesencoding human IL-12 and GM-CSF. J Neurooncol 2000; 47: 2330.Google Scholar
22. Lieshcke, G, Burgess, A. Granulocyte colony-stimulating factor andgranulocyte-macrophage colony-stimulating factor (part I). NEJM 1992; 327: 2835.Google Scholar
23. Aglietta, M, Piacibello, W, Pasquino, P, et al. Rationale for the use ofgranulocyte-macrophage colony-stimulating factor. Semin Oncol 1994; 21: 59.Google Scholar
24. Engelhard, M, Brittinger, G. Clinical relevance of granulocyte-macrophage colony-stimulating factor. Semin Oncol 1994; 21: 14.Google Scholar
25. Hanada, K, Tsunoda, R, Hamada, H. GM-CSF-induced in vivoexpansion of splenic dendritic cells and their strong costimulation activity. J Leukocyte Biol 1996; 60: 181190.Google Scholar
26. Brunda, MJ. Interleukin-12. J Leukocyte Biol 1994; 55: 280288.CrossRefGoogle ScholarPubMed
27. Tahara, H, Lotze, MT. Antitumor effects of interleukin-12 (IL-12):applications for the immunotherapy and gene therapy of cancer. Gene Ther 1995; 2: 96106.Google Scholar
28. Tahara, H, Lotze, MT, Robbins, PD, Storkus, WJ, Zitvogel, L. ClinicalProtocol: IL-12 gene therapy using direct injection of tumors with genetically engineered autologous fibroblasts. Hum Gene Ther 1995; 6: 16071624.Google Scholar
29. Li, Y, McGowan, P, Hellstrom, I, Hellstrom, KE, Chen, L. Costimulation of tumor-reactive CD4+ and CD8+ T lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma. J Immunol 1994; 153: 421427.Google Scholar
30. Freeman, G, Gribben, J, Baussioties, V, et al. Cloning of B7-2: aCTLA-4 counter-receptor that costimulates human T-cell proliferation. Science 1993; 262: 909911.Google Scholar
31. Chen, L, Ashe, S, Brady, W, et al. Costimulation of antitumorimmunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 1992; 71: 10931102.Google Scholar
32. Lanier, L, O’Fallon, S, Somoza, C, et al. CD80 (B7) and CD86 (B70)provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J Immunol 1995; 154: 97105.Google Scholar
33. Mondino, A, Jenkins, MK. Surface proteins involved in T cellcostimulation. J Leukocyte Biol 1994; 55: 805815.CrossRefGoogle Scholar
34. June, C, Bluestone, J, Nadler, L. The B7 and CD28 receptor families. Immunol Today 1994; 15: 321331.Google Scholar
35. Yang, G, Hellstrom, KE, Hellstrom, I, Chen, L. Antitumor immunityelicited by tumor cells transfected with B7-2, a second ligand forCD28/CTLA-4 costimulatory molecules. J Immunol 1995; 154: 27942800.Google Scholar
36. Plumas, J, Chaperot, L, Jacob, M-C, et al. Malignant B lymphocytesfrom non-Hodgkin’s lymphoma induce allogeneic proliferative and cytotoxic T cell responses in primary mixed lymphocyte cultures: an important role of costimulatory molecules CD80 (B7-1) and CD86 (B7-2) in stimulation by tumor cells. Eur JImmunol 1995; 25: 33323341.Google Scholar
37. Glick, RP, Lichtor, T, Mogharbel, A, Taylor, CA, Cohen, EP. Intracerebral versus subcutaneous immunization with allogeneic fibroblasts genetically engineered to secrete interleukin-2 in the treatment of central nervous system glioma and melanoma. Neurosurgery 1997; 41: 898907.Google Scholar
38. Glick, RP, Lichtor, T, Kim, TS, Ilangovan, S, Cohen, EP. Fibroblastsgenetically engineered to secrete cytokines suppress tumor growth and induce antitumor immunity to a murine glioma in vivo. Neurosurgery 1995; 36: 548555.Google Scholar
39. Auer, RN, Del Maestro, RF, Anderson, R. A simple and reproducibleexperimental in vivo glioma model. Can J Neurol Sci 1981; 8:325331.Google Scholar
40. Hamilton, D, McKean, JDS, Tulip, J, Boisvert, D, Cummins, J. In vitrophotoradiation therapy of rat 9L gliosarcoma. J Neurosurg 1986; 64: 775779.Google Scholar
41. Krushelnycky, BW, Farr-Jones, MA, Mielke, B, et al. Development ofa large-animal human brain tumor xenograft model in immunosuppressed cats. Cancer Res 1991; 51: 24302437.Google Scholar
42. Parney, IF, Farr-Jones, MA, Petruk, KC. Improved technique forestablishing short term human brain tumor cultures. J Neurooncol 1999; 43: 110.Google Scholar
43. Robinson, D, Elliott, JF, Chang, LJ. Retroviral vector with a CMV-IE/HIV-TAR hybrid LTR gives high basal expression levels andis upregulated by HIV-1 Tat. Gene Ther 1995; 2: 269278.Google Scholar
44. Miller, AD, Buttimore, C. Redesign of retrovirus packaging cell linesto avoid recombination leading to helper virus production. Molec Cell Biol 1986; 6: 28952902.Google Scholar
45. Miller, AD, Miller, DG, Garcia, JV, Lynch, CM. Use of retroviralvectors for gene transfer and expression. Meth Enzymol 1993; 217: 581599.CrossRefGoogle Scholar
46. King, C, Hoenger, RM, Cleary, MM, et al. Interleukin-4 acts at thelocus of the antigen-presenting dendritic cell to counter-regulatecytotoxic CD8+ T-cell responses. Nature Med 2001; 7: 206214.Google Scholar
47. Badie, B, Schartner, JM, Paul, J, et al. Dexamethasone-inducedabolition of the inflammatory response in an experimental glioma model: a flow cytometry study. J Neurosurg 2000; 93: 634639.Google Scholar
48. Roszman, T, Elliott, L, Brooks, W. Modulation of T-cell function bygliomas. Immunol Today 1991; 12: 370374.Google Scholar
49. Morford, LA, Elliott, LH, Carlson, SL, Brooks, WH, Roszman, TL. Tcell receptor-mediated signalling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 1997; 159: 44154425.Google Scholar
50. Lee, PP, Yee, C, Savage, PA, et al. Characterization of circulating Tcells specific for tumor-associated antigens in melanoma patients. Nature Med 1999; 5: 677685.Google Scholar
51. Kurpad, SN, Zhao, X-G, Wikstrand, CJ, et al. Tumor antigens inastrocytic gliomas. Glia 1995; 15: 244256.Google Scholar
52. Lampson, LA. Immunobiology of brain tumors: antigens, effectors,and delivery to sites of microscopic tumor in the brain. In: Black, PM, Loeffler, (Eds.), Cancer of the Nervous System. Blackwell Science, Inc., 1997.Google Scholar
53. Sobol, RE, Fakhrai, H, Shawler, D, et al. Interleukin-2 gene therapyin a patient with glioblastoma. Gene Ther 1995; 2: 164167.Google Scholar
54. Ellem, KAO, O’Rourke, MGE, Johnson, GR, et al. A case report:immune responses and clinical course of the first human use of granulocyte-macrophage colony-stimulating factor-transduced autologous melanoma cells for immunotherapy. Cancer ImmunolImmunother 1997; 44: 1020.CrossRefGoogle ScholarPubMed