Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T15:36:27.530Z Has data issue: false hasContentIssue false

hnRNP A1 and A/B Interaction with PABPN1 in Oculopharyngeal Muscular Dystrophy

Published online by Cambridge University Press:  02 December 2014

Xueping Fan
Affiliation:
Center for Research in Neuroscience, McGill University, and the McGill University Health Center, Montreal, Quebec, Canada
Christiane Messaed
Affiliation:
Center for Research in Neuroscience, McGill University, and the McGill University Health Center, Montreal, Quebec, Canada
Patrick Dion
Affiliation:
Center for Research in Neuroscience, McGill University, and the McGill University Health Center, Montreal, Quebec, Canada
Janet Laganiere
Affiliation:
Center for Research in Neuroscience, McGill University, and the McGill University Health Center, Montreal, Quebec, Canada
Bernard Brais
Affiliation:
†Centre de recherche du CHUM, Hôpital Notre-Dame, Université de Montréal, Montreal, Quebec, Canada
George Karpati
Affiliation:
Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
Guy A. Rouleau
Affiliation:
Center for Research in Neuroscience, McGill University, and the McGill University Health Center, Montreal, Quebec, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive ptosis, dysphagia and proximal limb weakness. The autosomal dominant form of this disease is caused by short expansions of a (GCG)6 repeat to (GCG)8-13 in the PABPN1 gene. The mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminus of PABPN1. The mutated PABPN1 (mPABPN1) induces the formation of intranuclear filamentous inclusions that sequester poly(A) RNA and are associated with cell death.

Methods:

Human fetal brain cDNA library was used to look for PABPN1 binding proteins using yeast two-hybrid screen. The protein interaction was confirmed by GST pull-down and co-immunoprecipitation assays. Oculopharyngeal muscular dystrophy cellular model and OPMD patient muscle tissue were used to check whether the PABPN1 binding proteins were involved in the formation of OPMD intranuclear inclusions.

Results:

We identify two PABPN1 interacting proteins, hnRNP A1 and hnRNP A/B. When co-expressed with mPABPN1 in COS-7 cells, predominantly nuclear protein hnRNP A1 and A/B co-localize with mPABPN1 in the insoluble intranuclear aggregates. Patient studies showed that hnRNP A1 is sequestered in OPMD nuclear inclusions.

Conclusions:

The hnRNP proteins are involved in mRNA processing and mRNA nucleocytoplasmic export, sequestering of hnRNPs in OPMD intranuclear aggregates supports the view that OPMD intranuclear inclusions are “poly(A) RNA traps”, which would interfere with RNA export, and cause muscle cell death.

Résumé:

RÉSUMÉ:Introduction:

La dystrophie musculaire oculopharyngée (DMOP) est une maladie de l’âge adulte caractérisée par une ptose progressive des paupières, une dysphagie et une faiblesse musculaire proximale. La forme autosomique dominante est causée par de courtes expansions d’une répétition (GCG)6 à (GCG)8-13 dans le gene PABPN1. Les mutations donnent lieu à une expansion d’un tractus de polyalanine de 10 à 12-17 alanines dans la partie N-terminale de PABPN1. Le gène PABPN1 muté (PABPN1m) induit la formation d’inclusions filamenteuses intranucléaires qui séquestrent l’ARN poly(A) et entraînent la mort cellulaire.

Méthodes:

Une librairie d’ADNc provenant de cerveau foetal humain a été utilisée pour chercher la protéine liant PABPN1 au moyen du système à double-hybrides dans la levure. L’interaction protéine-protéine a été confirmée par GST pull-down et co-immunoprécipitation. Le modèle cellulaire de DMOP et le tissu musculaire provenant de patients atteints DMOP ont été utilisés pour vérifier si les protéines liant PABPN1 étaient impliquées dans la formation des inclusions intranucléaires dans la DMOP.

Résultats:

Nous avons identifié deux protéines interagissant avec PABPN1, hnRNP A1 et hnRNP A/B. En co-expression avec PABPN1m dans des cellules COS-7, les protéines hnRNP A1 et A/B à prédominance nucléaire se retrouvent avec PABPN1m dans les agrégats intranucléaires insolubles. Des études chez les patients atteints de DMOP ont montré que hnRNP A1 est séquestré dans les inclusions nucléaires.

Conclusions:

Les protéines hnRNP sont impliquées dans la maturation de l’ARNm et le transport nucléocytoplasmique de l’ARNm. La séquestration de hnRNPs dans les agrégats intranucléaires appuie l’hypothèse selon laquelle les inclusions intranucléaires de la DMOP sont des “piètes à ARN poly(A)” qui interfèrent avec le transport de l’ARN et causent la mort des cellules musculaires.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. Brais, B, Rouleau, GA, Bouchard, JP, Fardeau, M, Tome FM. Oculopharyngeal muscular dystrophy. Semin Neurol 1999;19:5966.CrossRefGoogle ScholarPubMed
2. Muller, T, Schroder, R, Zierz, S. GCG repeats and phenotype inoculopharyngeal muscular dystrophy. Muscle Nerve 2001;24:120122.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
3. Blumen, SC, Korczyn, AD, Lavoie H, et al. Oculopharyngeal MDamong Bukhara Jews is due to a founder (GCG)9 mutation in the PABP2 gene. Neurology 2000;55:12671270.CrossRefGoogle ScholarPubMed
4. Nagashima, T, Kato, H, Kase, M, et al. Oculopharyngeal musculardystrophy in a Japanese family with a short GCG expansion (GCG)(11) in PABP2 gene. Neuromuscul Disord 2000;10:173177.CrossRefGoogle Scholar
5. Mirabella, M, Silvestri, G, Di Giovanni, S, et al. GCG geneticexpansions in Italian patients with oculopharyngeal muscular dystrophy. Neurology 2000;54:608614.CrossRefGoogle ScholarPubMed
6. Grewal, RP, Karkera, JD, Grewal, RK, Detera-Wadleigh, SD. Mutation analysis of oculopharyngeal muscular dystrophy in Hispanic American families. Arch Neurol 1999;56:13781381.CrossRefGoogle ScholarPubMed
7. Tome, FM, Fardeau, M. Nuclear inclusions in oculopharyngealdystrophy. Acta Neuropathol (Berl) 1980;49:8587.CrossRefGoogle Scholar
8. Tome, FM, Chateau, D, Helbling-Leclerc, A, Fardeau, M. Morphological changes in muscle fibers in oculopharyngeal muscular dystrophy. Neuromuscul Disord 1997;7 (Suppl 1):S63-69.CrossRefGoogle ScholarPubMed
9. Brais, B, Xie, YG, Sanson, M, et al. The oculopharyngeal musculardystrophy locus maps to the region of the cardiac alpha and beta myosin heavy chain genes on chromosome 14q11.2-q13. Hum Mol Genet 1995;4:429434.Google Scholar
10. Brais, B, Bouchard, JP, Gosselin, F, et al. Using the full power oflinkage analysis in 11 French Canadian families to fine map the oculopharyngeal muscular dystrophy gene. Neuromuscul Disord 1997; 7(Suppl 1): S70-74.Google Scholar
11. Xie, YG, Rochefort, D, Brais, B, et al. Restriction map of a YAC andcosmid contig encompassing the oculopharyngeal muscular dystrophy candidate region on chromosome 14q11.2-q13. Genomics 1998;52:201204.CrossRefGoogle ScholarPubMed
12. Brais, B, Bouchard, JP, Xie, YG, et al. Short GCG expansions in thePABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 1998;18:164167.CrossRefGoogle ScholarPubMed
13. Muragaki, Y, Mundlos, S, Upton, J, Olsen, BR. Altered growth andbranching patterns in synpolydactyly caused by mutations in HOXD13. Science 1996;272:548551.CrossRefGoogle ScholarPubMed
14. Mundlos, S, Otto, F, Mundlos, C, et al. Mutations involving thetranscription factor CBFA1 cause cleidocranial dysplasia. Cell 1997;89:773779.CrossRefGoogle Scholar
15. Brown, SA, Warburton, D, Brown, LY, et al. Holoprosencephaly dueto mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 1998;20:180183.CrossRefGoogle Scholar
16. Goodman, FR, Bacchelli, C, Brady, AF, et al. Novel HOXA13mutations and the phenotypic spectrum of hand-foot-genitalsyndrome. Am J Hum Genet 2000;67:197202.CrossRefGoogle Scholar
17. Crisponi, L, Deiana, M, Loi, A, et al. The putative forkheadtranscription factor FOXL2 is mutated in blepharophimosis/ ptosis/epicanthus inversus syndrome. Nat Genet 2001;27:159166.CrossRefGoogle ScholarPubMed
18. Ferrigno, P, Silver, PA. Polyglutamine expansions: proteolysis,chaperones, and the dangers of promiscuity. Neuron 2000;26:912.CrossRefGoogle ScholarPubMed
19. Huntington’s Disease Collaborative Research Group. A novel genecontaining a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72:971983.CrossRefGoogle Scholar
20. La Spada, AR, Wilson, EM, Lubahn, DB, Harding, AE, Fischbeck, KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991;352:7779.CrossRefGoogle ScholarPubMed
21. Koide, R, Ikeuchi, T, Onodera, O, et al. Unstable expansion of CAGrepeat inhereditarydentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994;6:913.CrossRefGoogle Scholar
22. Nagafuchi, S, Yanagisawa, H, Sato, K, et al. Dentatorubral andpallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 1994;6:1418.CrossRefGoogle ScholarPubMed
23. Orr, HT, Chung, MY, Banfi, S, et al. Expansion of an unstabletrinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4:221226.CrossRefGoogle ScholarPubMed
24. Kawaguchi, Y, Okamoto, T, Taniwaki, M, et al. CAG expansions in anovel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994;8:221228.CrossRefGoogle Scholar
25. Imbert, G, Saudou, F, Yvert, G, et al. Cloning of the gene forspinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996;14:285291.CrossRefGoogle ScholarPubMed
26. Pulst, SM, Nechiporuk, T, Gispert, S, et al. Moderate expansion of anormally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996;14:269276.CrossRefGoogle Scholar
27. Sanpei, K, Takano, H, Igarashi, S, et al. Identification of thespinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996;14:277284.CrossRefGoogle ScholarPubMed
28. David, G, Abbas, N, Stevanin, G, et al. Cloning of the SCA7 genereveals a highly unstable CAG repeat expansion. Nat Genet 1997;17:6570.CrossRefGoogle ScholarPubMed
29. Koob, MD, Benzow, KA, Bird, TD, et al. Rapid cloning of expandedtrinucleotide repeat sequences from genomic DNA. Nat Genet 1998;18:7275.CrossRefGoogle Scholar
30. Wahle, E. Anovel poly(A)-binding protein acts as a specificity factorin the second phase of messenger RNA polyadenylation. Cell 1991;66:759768.CrossRefGoogle Scholar
31. Colgan, DF, Manley, JL. Mechanism and regulation of mRNApolyadenylation. Genes Dev 1997;11:27552766.CrossRefGoogle Scholar
32. Minvielle-Sebastia, L, Keller, W. mRNA polyadenylation and itscoupling to other RNA processing reactions and to transcription. Curr Opin Cell Biol 1999;11:352357.CrossRefGoogle Scholar
33. Barabino, SML, Keller, W. Last but not least: regulated poly(A) tailformation. Cell 1999;99:911.CrossRefGoogle ScholarPubMed
34. Wahle, E. Poly(A) tail length control is caused by termination ofprocessive synthesis. J Biol Chem 1995;270:28002808.CrossRefGoogle ScholarPubMed
35. Bienroth, S, Keller, W, Wahle, E. Assembly of a processive messengerRNA polyadenylation complex. EMBO J 1993;12:585594.CrossRefGoogle Scholar
36. Calado, A, Tome, FMS, Brais, B, et al. Nuclear inclusions inoculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 2000;9:23212328.CrossRefGoogle Scholar
37. Becher, MW, Kotzuk, JA, Davis, LE, Bear, DG. Intranuclearinclusions in oculopharyngeal muscular dystrophy containpoly(A) binding protein 2. Ann Neurol 2000;48:812815.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
38. Uyama, E, Tsukahara, T, Goto, K, et al. Nuclear accumulation ofexpanded PABP2 gene product in oculopharyngeal muscular dystrophy. Muscle Nerve 2000;23:15491554.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
39. Shanmugam, V, Dion, P, Rochefort, D, et al. PABP2 polyalanine tractexpansion causes intranuclear inclusions in oculopharyngealmuscular dystrophy. Ann Neurol 2000;48:798802.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
40. Fan, X, Dion, P, Laganiere, J, Brais, B, Rouleau, GA. Oligomerizationof polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death. Hum Mol Genet 2001;10:23412351.CrossRefGoogle ScholarPubMed
41. Kim, YJ, Noguchi, S, Hayashi, YK, et al. The product of anoculopharyngeal muscular dystrophy gene, poly(A)-binding protein 2, interacts with SKIP and stimulates muscle-specific gene expression. Hum Mol Genet 2001;10:11291139.CrossRefGoogle ScholarPubMed
42. Bao, YP, Cook, LJ, O’Donovan, D, et al. Mammalian, yeast, bacterialand chemical chaperones reduce aggregate formation and death in a cell model of oculopharyngeal muscular dystrophy. J Biol Chem 2002;277:1226312269.CrossRefGoogle Scholar
43. Nakielny, S, Dreyfuss, G. Transport of proteins and RNAs in and outof the nucleus. Cell 1999;99:677690.CrossRefGoogle Scholar
44. Kumar, A, Sierakowska, H, Szer, W. Purification and RNA bindingproperties of a C-type hnRNP protein from HeLa cells. J Biol Chem 1987;262:1712617137.CrossRefGoogle Scholar
45. Khan, FA, Jaiswal, AK, Szer, W. Cloning and sequence analysis of ahuman type A/B hnRNP protein. FEBS 1991;290:159161.CrossRefGoogle Scholar
46. Calado, A, Kutay, U, Kuhn, U, Wahle, E, Carmo-Fonseca, M. Deciphering the cellular pathway for transport of poly(A)-binding protein II. RNA 2000;6:245256.CrossRefGoogle ScholarPubMed
47. Krause, S, Fakan, S, Weis, K, Wahle, E. Immunodetection of poly(A)binding protein II in the cell nucleus. Exp Cell Res 1994;214:7582.CrossRefGoogle ScholarPubMed
48. Dreyfuss, G, Matunis, MJ, Pino-Roma, S, Burd, CG. hnRNP proteinsand the biogenesis of mRNA. Ann Rev Biochem 1993;62:289321.CrossRefGoogle Scholar
49. Swanson, MS. Functions of nuclear pre-mRNA/mRNA bindingproteins. In: Lamond, AI, (Ed). Pre-mRNA Processing. Berlin/ New York: Springer Verlag, 1995:1733.CrossRefGoogle Scholar
50. Pinol-Roma, S, Dreyfuss, G. Shuttling of pre-mRNA bindingproteins between nucleus and cytoplasm. Nature 1992;355:730732.CrossRefGoogle Scholar
51. Visa, N, Alzhanova-Ericsson, AT, Sun, X, Kiseleva, E. A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 1996;84:253264.CrossRefGoogle ScholarPubMed
52. Nakielny, S, Dreyfuss, G. Nuclear export of proteins and RNAs. CurrOpin Cell Biol 1997;9:420429.Google ScholarPubMed
53. Krecic, AM, Swanson, MS. hnRNP complexes: composition,structure, and function. Curr Opin Cell Biol 1999;11:363371.CrossRefGoogle ScholarPubMed
54. Lau, PP, Zhu, HJ, Nakamuta, M, Chan, L. Cloning of an apobec-1-binding protein that also interacts with apolipoprotein B mRNA and evidence for its involvement in RNA editing. J Biol Chem 1997;272:14521455.CrossRefGoogle ScholarPubMed
55. Innerarity, TL, Boren, J, Yamanaka, S, Olofsson, SO. Biosynthesis of apolipoprotein B48-containing lipoproteins. J Biol Chem 1996;271:23532356.CrossRefGoogle ScholarPubMed
56. Lau, PP, Xiong, W, Zhu, HJ, Chen, SH, Chan, L. Apolipoprotein BmRNA editing is an intranuclear event that occurs post-transcriptionally coincident with splicing and polyadenylation. J Biol Chem 1991;266:2055020554.CrossRefGoogle Scholar
57. Sherman, MY, Goldberg, AL. Cellular defenses against unfoldedproteins: a cell biologist thinks about neurodegenerative diseases. Neuron 2001;29:1532.CrossRefGoogle Scholar
58. Orr, HT. Beyond the Qs in the polyglutamine diseases. Genes Dev 2001;15:925932.CrossRefGoogle ScholarPubMed