Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-d8fc5 Total loading time: 0.437 Render date: 2021-09-18T14:43:58.836Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Acute Stroke Imaging Part I: Fundamentals

Published online by Cambridge University Press:  02 December 2014

K. Butcher*
Affiliation:
Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
D. Emery
Affiliation:
Department of Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
*Corresponding
Division of Neurology, 2E3 WMC Health Sciences Centre, University of Alberta, 8440 112th St., Edmonton, Alberta, T6G 2B7, Canada.
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neuroimaging is essential to stroke diagnosis and management. To date, the non-contrast CT has served as our main diagnostic tool. Although brain parenchymal changes visible on CT do provide valuable prognostic information, they provide limited insight into the potential for tissue salvage in response to reperfusion therapy, such as thrombolysis. Newer advanced CT and MRI based imaging techniques have increased the detection sensitivity for hyperacute and chronic parenchymal changes, including ischemia and hemorrhage, permit visualization of blood vessels and cerebral blood flow. This review outlines the basic principles underlying acquisition and interpretation of these newer imaging modalities in the setting of acute stroke. The utility of advanced brain parenchymal and blood flow imaging in the context of acute stroke patient management is also discussed. Part II in this series is a discussion of how these techniques can be used to rationally select appropriate patients for thrombolysis based on pathophysiological data.

Résumé:

RÉSUMÉ:

La neuroimagerie est essentielle au diagnostic et à la prise en charge de l’accident vasculaire cérébral. À ce jour, la tomodensitométrie sans contraste constitue le principal outil diagnostique. Bien que les changements du parenchyme cérébral visibles à la tomodensitométrie fournissent une information précieuse sur le pronostic, ils offrent peu d’informations sur la possibilité de préserver des tissus potentiellement viables en réponse aux traitements de reperfusion comme la thrombolyse. L’imagerie basée sur les techniques nouvelles plus avancées de tomodensitométrie et de résonance magnétique ont augmenté la sensibilité de détection des changements parenchymateux hyperaigus et chroniques, dont l’ischémie et l’hémorragie, et permettent la visualisation des vaisseaux sanguins et du flot sanguin cérébral. Cette revue décrit les principes de base sous–jacents à l’acquisition et à l’interprétation de ces nouvelles modalités d’imagerie dans le contexte de l’accident vasculaire cérébral aigu. L’utilité de l’imagerie spécialisée du parenchyme et du flot sanguin cérébral dans le contexte de la prise en charge de l’accident vasculaire cérébral est également abordée. La deuxième partie de cette série discute de l’utilisation de ces techniques pour sélectionner de façon appropriée les patients pour la thrombolyse en se basant sur des données physiopathologiques.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Astrup, J, Siesjo, BK, Symon, L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. 1981 Nov-Dec;12(6):7235.Google ScholarPubMed
2. Hacke, W, Donnan, G, Fieschi, C, Kaste, M, von Kummer, R, Broderick, JP, et al. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 2004 Mar 6;363(9411):76874.Google ScholarPubMed
3. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995 Dec 14;333(24): 15817.Google ScholarPubMed
4. Hacke, W, Kaste, M, Bluhmki, E, Brozman, M, Davalos, A, Guidetti, D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008 Sep 25;359(13):131729.CrossRefGoogle ScholarPubMed
5. Butcher, KS, Lee, SB, Parsons, MW, Allport, L, Fink, J, Tress, B, et al. Differential prognosis of isolated cortical swelling and hypoattenuation on CT in acute stroke. Stroke. 2007 Mar;38(3): 9417.CrossRefGoogle ScholarPubMed
6. Na, DG, Kim, EY, Ryoo, JW, Lee, KH, Roh, HG, Kim, SS, et al. CT sign of brain swelling without concomitant parenchymal hypoattenuation: comparison with diffusion- and perfusion-weighted MR imaging. Radiology. 2005 Jun;235(3):99248.CrossRefGoogle Scholar
7. Dzialowski, I, Weber, J, Doerfler, A, Forsting, M, von Kummer, R. Brain tissue water uptake after middle cerebral artery occlusion assessed with CT. J Neuroimaging. 2004 Jan;14(1):428.CrossRefGoogle ScholarPubMed
8. Kucinski, T, Majumder, A, Knab, R, Naumann, D, Fiehler, J, Vaterlein, O, et al. Cerebral perfusion impairment correlates with the decrease of CT density in acute ischaemic stroke. Neuroradiology. 2004 Sep;46(9):71622.CrossRefGoogle Scholar
9. von Kummer, R, Bourquain, H, Bastianello, S, Bozzao, L, Manelfe, C, Meier, D, et al. Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology. 2001 Apr;219(1):95100.CrossRefGoogle Scholar
10. von Kummer, R. Early major ischemic changes on computed tomography should preclude use of tissue plasminogen activator. Stroke. 2003 Mar;34(3):8201.CrossRefGoogle ScholarPubMed
11. von Kummer, R, Allen, KL, Holle, R, Bozzao, L, Bastianello, S, Manelfe, C, et al. Acute stroke: usefulness of early CT findings before thrombolytic therapy. Radiology. 1997 Nov;205(2): 32733.CrossRefGoogle ScholarPubMed
12. Butcher, K, Parsons, M, Baird, T, Barber, A, Donnan, G, Desmond, P, et al. Perfusion thresholds in acute stroke thrombolysis. Stroke. 2003;34:215964.CrossRefGoogle ScholarPubMed
13. Furlan, M, Marchal, G, Viader, F, Derlon, JM, Baron, JC. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol. 1996 Aug;40(2):21626.CrossRefGoogle ScholarPubMed
14. Parsons, MW, Pepper, EM, Bateman, GA, Wang, Y, Levi, CR. Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology. 2007 Mar 6;68(10): 7306.CrossRefGoogle ScholarPubMed
15. Pexman, JH, Barber, PA, Hill, MD, Sevick, RJ, Demchuk, AM, Hudon, ME, et al. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001 Sep;22(8):153442.Google ScholarPubMed
16. Barber, PA, Demchuk, AM, Zhang, J, Buchan, AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet. 2000 May 13;355(9216):16704.CrossRefGoogle ScholarPubMed
17. Hill, MD, Rowley, HA, Adler, F, Eliasziw, M, Furlan, A, Higashida, RT, et al. Selection of acute ischemic stroke patients for intra-arterial thrombolysis with pro-urokinase by using ASPECTS. Stroke. 2003 Aug;34(8):192531.CrossRefGoogle ScholarPubMed
18. Dzialowski, I, Hill, MD, Coutts, SB, Demchuk, AM, Kent, DM, Wunderlich, O, et al. Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. Stroke. 2006 Apr;37(4):9738.CrossRefGoogle ScholarPubMed
19. Atlas, SW. Magnetic resonance imaging of the brain and spine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2002.Google ScholarPubMed
20. Hashemi, RH, Bradley, WG, Lisanti, CJ. MRI: the basics. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2004.Google Scholar
21. Hjort, N, Christensen, S, Solling, C, Ashkanian, M, Wu, O, Rohl, L, et al. Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann Neurol. 2005 Sep;58(3):4625.CrossRefGoogle Scholar
22. Saur, D, Kucinski, T, Grzyska, U, Eckert, B, Eggers, C, Niesen, W, et al. Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. AJNR Am J Neuroradiol. 2003 May;24(5):87885.Google Scholar
23. Barber, PA, Darby, DG, Desmond, PM, Gerraty, RP, Yang, Q, Li, T, et al. Identification of major ischemic change. Diffusion-weighted imaging versus computed tomography. Stroke. 1999;30(10): 205965.CrossRefGoogle Scholar
24. Okamoto, K, Ito, J, Ishikawa, K, Sakai, K, Tokiguchi, S. Diffusion-weighted echo-planar MR imaging in differential diagnosis of brain tumors and tumor-like conditions. Eur Radiol. 2000;10(8): 134250.CrossRefGoogle Scholar
25. Reddy, JS, Mishra, AM, Behari, S, Husain, M, Gupta, V, Rastogi, M, et al. The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions: a report of 147 lesions. Surg Neurol. 2006 Sep;66(3):24650; discussion 50-1.CrossRefGoogle Scholar
26. Kuker, W, Ruff, J, Gaertner, S, Mehnert, F, Mader, I, Nagele, T. Modern MRI tools for the characterization of acute demyelinating lesions: value of chemical shift and diffusion-weighted imaging. Neuroradiology. 2004 Jun;46(6):4216.Google ScholarPubMed
27. Kono, K, Inoue, Y, Nakayama, K, Shakudo, M, Morino, M, Ohata, K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001 Jun-Jul;22(6): 10818.Google Scholar
28. Desmond, PM, Lovell, AC, Rawlinson, AA, Parsons, MW, Barber, PA, Yang, Q, et al. The value of apparent diffusion coefficient maps in early cerebral ischemia. AJNR Am J Neuroradiol. 2001 Aug;22(7):12607.Google ScholarPubMed
29. Ulug, AM, Beauchamp, N, Bryan, RN, van Zijl, PC. Absolute quantitation of diffusion constants in human stroke. Stroke. 1997;28:48390.CrossRefGoogle ScholarPubMed
30. Kidwell, CS, Saver, JL, Mattiello, J, Starkman, S, Vinuela, F, Duckwiler, G, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47(4):4629.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
31. Oppenheim, C, Grandin, C, Samson, Y, Smith, A, Duprez, T, Marsault, C, et al. Is there an apparent diffusion coefficient threshold in predicting tissue viability in hyperacute stroke? Stroke. 2001 Nov;32(11):248691.CrossRefGoogle ScholarPubMed
32. Loh, PS, Butcher, K, Parsons, M, Desmond, P, Tress, B, Davis, S. ADC thresholds do not predict the response to thrombolysis. Stroke. 2005;Dec;36(12):262631.CrossRefGoogle ScholarPubMed
33. Hayman, L, Taber, K, Ford, J, Bryan, R. Mechanisms of MR signal alteration by acute intracerebral blood: old concepts and new theories. AJNR Am J Neuroradiol. 1991;12 (5):899907.Google ScholarPubMed
34. Zamani, AA. Imaging of intracranial hemorrhage. In: Rumbaugh, CL, Wang, A, Tsai, FY, editors. Cerebrovascular disease imaging and interventional treatment options. New York: Igaku-Shoin; 1995. p. 23247.Google Scholar
35. Linfante, I, Llinas, RH, Caplan, LR, Warach, S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke. 1999;30(11):22637.CrossRefGoogle ScholarPubMed
36. Butcher, KS, Baird, T, MacGregor, L, Desmond, P, Tress, B, Davis, S. Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke. 2004;35(8):187985.CrossRefGoogle ScholarPubMed
37. Patel, MR, Edelman, RR, Warach, S. Detection of Hyperacute Primary Intraparenchymal Hemorrhage by Magnetic Resonance Imaging. Stroke. 1996;27(12):23214.CrossRefGoogle ScholarPubMed
38. Lin, DD, Filippi, CG, Steever, AB, Zimmerman, RD. Detection of intracranial hemorrhage: comparison between gradient-echo images and b(0) images obtained from diffusion-weighted echo-planar sequences. AJNR Am J Neuroradiol. 2001 Aug;22(7): 127581.Google Scholar
39. Hardy, PA, Kucharczyk, W, Henkelman, RM. Cause of signal loss in MR images of old hemorrhagic lesions. Radiology. 1990 Feb;174(2):54955.CrossRefGoogle ScholarPubMed
40. Patel, R, Edelman, R, Warach, S. Detection of hyperacute primary intraparenchymal hemorrhge by magnetic resonance imaging. Stroke. 1996;27:23214.CrossRefGoogle Scholar
41. Kidwell, CS, Chalela, JA, Saver, JL, Starkman, S, Hill, MD, Demchuk, AM, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA. 2004 Oct;292(15):182330.CrossRefGoogle Scholar
42. Greenberg, S, Finklestein, S, Schaefer, P. Petechial hemorrhages accompanying lobar hemorrhage: detection by gradient-echo MRI. Neurology. 1996;46(6):17514.CrossRefGoogle ScholarPubMed
43. Fazekas, F, Kleinert, R, Roob, G, Kleinert, G, Kapeller, P, Schmidt, R, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol. 1999;20(4):63742.Google ScholarPubMed
44. Roob, G, Lechner, A, Schmidt, R, Flooh, E, Hartung, H-P, Fazekas, F. Frequency and location of microbleeds in patients with primary intracerebral hemorrhage. Stroke. 2000;31 (11):26659.CrossRefGoogle ScholarPubMed
45. Roob, G, Kleinert, R, Seifert, T, Lechner, A, Kapeller, P, Kleinert, G, et al. [Indications of cerebral micro-hemorrhage in MRI. Comparative histological findings and possible clinical significance]. Nervenarzt. 1999 Dec;70(12):10827.CrossRefGoogle Scholar
46. Jeerakathil, T, Wolf, PA, Beiser, A, Hald, JK, Au, R, Kase, CS, et al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke. 2004 Aug;35(8):18315.CrossRefGoogle ScholarPubMed
47. Roob, G, Schmidt, R, Kapeller, P, Lechner, A, Hartung, HP, Fazekas, F. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology. 1999 Mar 23;52(5):9914.CrossRefGoogle Scholar
48. Chalela, JA, Kang, DW, Warach, S. Multiple cerebral microbleeds: MRI marker of a diffuse hemorrhage-prone state. J Neuroimaging. 2004 Jan;14(1):547.Google Scholar
49. Kidwell, CS, Saver, JL, Villablanca, JP, Duckwiler, G, Fredieu, A, Gough, K, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke. 2002 Jan;33(1):958.CrossRefGoogle Scholar
50. Nighoghossian, N, Hermier, M, Adeleine, P, Blanc-Lasserre, K, Derex, L, Honnorat, J, et al. Old microbleeds are a potential risk factor for cerebral bleeding after ischemic stroke: a gradient-echo T2*-weighted brain MRI study. Stroke. 2002 Mar;33(3):73542.CrossRefGoogle ScholarPubMed
51. Kakuda, W, Thijs, VN, Lansberg, MG, Bammer, R, Wechsler, L, Kemp, S, et al. Clinical importance of microbleeds in patients receiving IV thrombolysis. Neurology. 2005 Oct 25;65(8):11758.CrossRefGoogle ScholarPubMed
52. Zimmerman, RA. Recent advances in MR imaging: FLAIR imaging. Crit Rev Neurosurg. 1998 May 13;8(3): 18892.CrossRefGoogle ScholarPubMed
53. Noguchi, K, Ogawa, T, Seto, H, Inugami, A, Hadeishi, H, Fujita, H, et al. Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion-recovery MR imaging. Radiology. 1997 Apr;203(1):25762.CrossRefGoogle ScholarPubMed
54. Singer, M, Atlas, S, Drayer, B. Subarachnoid space disease: diagnosis with fluid-attenuated inversion- recovery MR imaging and comparison with gadolinium-enhanced spin-echo MR imaging-blinded reader study. Radiology. 1998 August 1, 1998;208(2): 41722.CrossRefGoogle Scholar
55. Ohta, T, Kuroiwa, T. Timing of CT scanning after SAH. J Neurosurg. 1985 Nov;63(5):817.Google ScholarPubMed
56. van Gijn, J, van Dongen, KJ. The time course of aneurysmal haemorrhage on computed tomograms. Neuroradiology. 1982; 23(3):1536.CrossRefGoogle ScholarPubMed
57. Imaizumi, T, Chiba, M, Honma, T, Niwa, J. Detection of hemosiderin deposition by T2*-weighted MRI after subarachnoid hemorrhage. Stroke. 2003 Jul;34(7):16938.CrossRefGoogle ScholarPubMed
58. Stoner, T, Braff, S, Khoshyomn, S. High signal in subarachnoid spaces on FLAIR MR images in an adult with propofol sedation. Neurology. 2002 Jul 23;59(2):292.CrossRefGoogle Scholar
59. Frigon, C, Jardine, DS, Weinberger, E, Heckbert, SR, Shaw, DW. Fraction of inspired oxygen in relation to cerebrospinal fluid hyperintensity on FLAIR MR imaging of the brain in children and young adults undergoing anesthesia. AJR Am J Roentgenol. 2002 Sep;179(3):7916.CrossRefGoogle Scholar
60. Manawadu, D, Butcher, K. Evolving hyperdense middle cerebral artery sign. J Neurol Neurosurg Psychiatry. 2008 Oct;79 (10):1106.CrossRefGoogle ScholarPubMed
61. Yu, D, Schaefer, PW, Rordorf, G, Gonzalez, RG. Magnetic resonance angiography in acute stroke. Semin Roentgenol. 2002 Jul;37(3): 2128.CrossRefGoogle ScholarPubMed
62. Sohn, CH, Sevick, RJ, Frayne, R. Contrast-enhanced MR angiography of the intracranial circulation. Magn Reson Imaging Clin N Am. 2003 Nov;11(4):599614.CrossRefGoogle ScholarPubMed
63. Marchal, G, Michiels, J, Bosmans, H, Van Hecke, P. Contrast-enhanced MRA of the brain. J Comput Assist Tomogr. 1992 Jan-Feb;16(1):259.CrossRefGoogle Scholar
64. Debrey, SM, Yu, H, Lynch, JK, Lovblad, KO, Wright, VL, Janket, SJ, et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis. Stroke. 2008 Aug;39(8):223748.CrossRefGoogle ScholarPubMed
65. Pomerantz, SR, Harris, GJ, Desai, HJ, Lev, MH. Computed tomography angiography and computed tomography perfusion in ischemic stroke: a step-by-step approach to image acquisition and three-dimensional postprocessing. Semin Ultrasound CT MR. 2006 Jun;27(3):24370.CrossRefGoogle Scholar
66. Lev, MH, Farkas, J, Rodriguez, VR, Schwamm, LH, Hunter, GJ, Putman, CM, et al. CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr. 2001 Jul-Aug;25(4):5208.CrossRefGoogle ScholarPubMed
67. Nguyen-Huynh, MN, Wintermark, M, English, J, Lam, J, Vittinghoff, E, Smith, WS, et al. How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke. 2008 Apr;39(4):11848.CrossRefGoogle ScholarPubMed
68. Yeung, R, Ahmad, T, Aviv, RI, de Tilly, LN, Fox, AJ, Symons, SP. Comparison of CTA to DSA in determining the etiology of spontaneous ICH. Can J Neurol Sci. 2009 Mar;36(2):17680.CrossRefGoogle ScholarPubMed
69. Thompson, AL, Kosior, JC, Gladstone, DJ, Hopyan, JJ, Symons, SP, Romero, F, et al. Defining the CT angiography ‘spot sign’ in primary intracerebral hemorrhage. Can J Neurol Sci. 2009 Jul;36(4):45661.CrossRefGoogle ScholarPubMed
70. Mnyusiwalla, A, Aviv, RI, Symons, SP. Radiation dose from multidetector row CT imaging for acute stroke. Neuroradiology. 2009 Jun 9. [Epub ahead of print]CrossRefGoogle Scholar
71. Hjort, N, Butcher, K, Davis, S, Kidwell, CS, Koroshetz, WJ, Rother, J, et al. Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke. 2005;36(2):38897.CrossRefGoogle Scholar
72. Ostergaard, L, Sorensen, AG, Kwong, KK, Weisskoff, RM, Gyldensted, C, Rosen, BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med. 1996;36(5):72636.CrossRefGoogle ScholarPubMed
73. Ostergaard, L, Weisskoff, RM, Chesler, DA, Gyldensted, C, Rosen, BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med. 1996;36(5):71525.CrossRefGoogle ScholarPubMed
74. Ostergaard, L, Smith, DF, Vestergaard-Poulsen, P, Hansen, SB, Gee, AD, Gjedde, A, et al. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cereb Blood Flow Metab. 1998 Apr;18(4):42532.CrossRefGoogle ScholarPubMed
75. Wintermark, M, Maeder, P, Thiran, JP, Schnyder, P, Meuli, R. Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol. 2001;11(7): 122030.CrossRefGoogle ScholarPubMed
76. Nabavi, DG, Cenic, A, Craen, RA, Gelb, AW, Bennett, JD, Kozak, R, et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology. 1999 Oct;213(1): 1419.CrossRefGoogle ScholarPubMed
77. Wintermark, M, Thiran, JP, Maeder, P, Schnyder, P, Meuli, R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol. 2001 May;22(5):90514.Google ScholarPubMed
78. Kudo, K, Terae, S, Katoh, C, Oka, M, Shiga, T, Tamaki, N, et al. Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR Am J Neuroradiol. 2003 Mar;24(3):41926.Google ScholarPubMed
You have Access
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Acute Stroke Imaging Part I: Fundamentals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Acute Stroke Imaging Part I: Fundamentals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Acute Stroke Imaging Part I: Fundamentals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *