Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T15:48:47.716Z Has data issue: false hasContentIssue false

Spectral Properties for Invertible Measure Preserving Transformations

Published online by Cambridge University Press:  20 November 2018

Jean-Marc Belley*
Affiliation:
Université de Montréal, Montréal, Québec
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An invertible measure preserving transformation T on the unit interval I generates a unitary operator U on the space L2(I) of Lebesque square integrable functions given by (Uf)(x) = f(Tx) for all f in L2(I) and x in I. By definition

for all f , g in L2(I), the bar denoting complex conjugation.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1973

References

1. Foias, C., Sur les mesures spectrales qui interviennent dans la théorie ergodique, J. Math. Mech. 4 (1964).Google Scholar
2. Halmos, P. R., Introduction to hilbert space and the theory of spectral multiplicity (Chelsea, New York, 1951).Google Scholar
3. Halmos, P. R., Lectures on ergodic theory, Math. Soc. of Japan (1956).Google Scholar
4. Koopman, B. O. and Neumann, V., Dynamical systems of continuous spectra, Proc. Nat. Acad. Sci. U.S.A. 18 (1932), 255263.Google Scholar
5. Prohorov, Yu. and Rozanov, Yu. A., Probability theory (Springer, New York, 1969).Google Scholar
6. Sinai, Y. G., Properties of spectra of ergodic dynamic systems, Doklady Akad. Nauk. S.S.S.R. 150 (1963), 12351237.Google Scholar