Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T12:39:52.228Z Has data issue: false hasContentIssue false

Nearly Countable Dense Homogeneous Spaces

Published online by Cambridge University Press:  20 November 2018

Michael Hrušák
Affiliation:
Centro de Ciencas Matemáticas, UNAM, A.P. 61-3, Xangari, Morelia, Michoacán, 58089, México. e-mail: michael@matmor.unam.mx
Jan van Mill
Affiliation:
Faculty of Sciences, Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a , 1081 HV Amsterdam, The Netherlands. e-mail: j.van.mill@vu.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study separable metric spaces with few types of countable dense sets. We present a structure theorem for locally compact spaces having precisely $n$ types of countable dense sets: such a space contains a subset $S$ of size at most $n-1$ such that $S$ is invariant under all homeomorphisms of $X$ and $X\,\backslash \,S$ is countable dense homogeneous. We prove that every Borel space having fewer than $\mathfrak{c}$ types of countable dense sets is Polish. The natural question of whether every Polish space has either countably many or $\mathfrak{c}$ many types of countable dense sets is shown to be closely related to Topological Vaught's Conjecture.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

Footnotes

*

The first author was supported by a PAPIIT grant IN 102311 and CONACyT grant 177758. The second author is pleased to thank the Centro de Ciencas Matemáticas in Morelia for generous hospitality and support.

References

[1] Ancel, F. D., An alternative proof and applications of a theorem of E. G. Effros. Michigan Math. J. 34(1987), no. 1, 3955. http://dx.doi.org/10.1307/mmj/1029003481 CrossRefGoogle Scholar
[2] Baumgartner, J. E., Partition relations for countable topological spaces. J. Combin. Theory Ser. A. 43(1986), no. 2, 178195. http://dx.doi.org/10.1016/0097-3165(86)90059-2 CrossRefGoogle Scholar
[3] Becker, H. and Kechris, A. S., The descriptive set theory of Polish group actions. London Mathematical Society Lecture Note Series, 232, Cambridge University Press, Cambridge, 1996.Google Scholar
[4] Bessaga, C. and Pełczyński, A., The estimated extension theorem, homogeneous collections and skeletons, and their applications to the topological classification of linear matrix spaces and convex sets. Fund. Math. 69(1970), 153190.CrossRefGoogle Scholar
[5] Brian, W., van Mill, J., and Suabedissen, R., Homogeneity and generalizations of 2-point sets. Houston J. Math, to appear. http://www.few.vu.nl/_vanmill/papers/preprints/SliceSets.pdf Google Scholar
[6] Charatonik, J. J. and Maćkowiak, T., Around Effros' theorem. Trans. Amer. Math. Soc. 298(1986), no. 2, 579602.Google Scholar
[7] I. M. Dektjarev, , A closed graph theorem for ultracomplete spaces. Russian, Dokl. Akad. Nauk SSSR 157(1964), 771773.Google Scholar
[8] Effros, E. G., Transformation groups and C*-algebras. Ann. of Math. 81(1965), 3855. http://dx.doi.org/10.2307/1970381 CrossRefGoogle Scholar
[9] Fitzpatrick, B., Jr. and Zhou, H-X., Countable dense homogeneity and the baire property. Topology Appl. 43(1992), no. 1, 114. http://dx.doi.org/10.1016/0166-8641(92)90148-S CrossRefGoogle Scholar
[10] Hausdorff, F., Über innere Abbildungen. Fund. Math. 23(1934),no. 1, 279291.CrossRefGoogle Scholar
[11] Hoht, A.i, Another alternative proof of Effros’ theorem. Topology Proc. 12(1987), no. 2, 295298.Google Scholar
[12] Homma, T., On the embedding of polyhedra in manifolds., Yokohama Math. J. 10(1962), 510.Google Scholar
[13] Hrušák, M. and Zamora Avilés, B., Countable dense homogeneity of definable spaces. Proc. Amer. Math. Soc. 133(2005), no. 11, 34293435. http://dx.doi.org/10.1090/S0002-9939-05-07858-5 CrossRefGoogle Scholar
[14] Hurewicz, W., Relativ perfekte Teile von Punktmengen und Mengen (A). Fund. Math. 12(1928), 78109.CrossRefGoogle Scholar
[15] Kechris, A. S., Classical descriptive set theory. Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.Google Scholar
[16] Levi, S., On Baire cosmic spaces. In: General topology and its relations to modern analysis and algebra, V (Prague, 1981), Sigma Ser. Pure Math., 3, Heldermann, Berlin, 1983, pp. 450454.Google Scholar
[17] Morley, M., The number of countable models. J. Symbolic Logic 35(1970), 1418. http://dx.doi.org/10.2307/2271150 CrossRefGoogle Scholar
[18] Ungar, G. S., On all kinds of homogeneous spaces. Trans. Amer. Math. Soc. 212(1975), 393400. http://dx.doi.org/10.1090/S0002-9947-1975-0385825-3 CrossRefGoogle Scholar
[19] Ungar, G. S., Countable dense homogeneity and n-homogeneity. Fund. Math. 99(1978), no. 3, 155160.CrossRefGoogle Scholar
[20] van Mill, J., The infinite-dimensional topology of function spaces. North-Holland Mathematical Library, 64, North-Holland Publishing Co., Amsterdam, 2001.Google Scholar
[21] van Mill, J., A note on Ford's example. Topology Proc. 28(2004), no. 2, 689694.Google Scholar
[22] van Mill, J., A note on the Effros theorem. Amer. Math. Monthly. 111(2004), no. 9, 801806. http://dx.doi.org/10.2307/4145191 CrossRefGoogle Scholar
[23] van Mill, J., On countable dense and strong n-homogeneity. Fund. Math. 214(2011), no. 3, 215239. http://dx.doi.org/10.4064/fm214-3-2 CrossRefGoogle Scholar
[24] Vaught, R. L., Denumerable models of complete theories. In: Infinitistic Methods (Proc. Sympos. Foundations of Math.,Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe,Warsaw, 1961, pp. 303321.Google Scholar