Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-m9wwp Total loading time: 0.241 Render date: 2021-07-29T20:01:41.812Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Homomorphisms on Function Algebras

Published online by Cambridge University Press:  20 November 2018

M. I. Garrido
Affiliation:
Departamento de Matemáticas, Universidad de Extremadura, Avda. Elvas, s/n 06071-Badajoz, Spain
J. Gómez Gil
Affiliation:
Departamento de Análisis Matemático, Universidad Complutense, 28040-Madrid, Spain
J. A. Jaramillo
Affiliation:
Depártamento de Andlisis Matemático, Universidad Complutense, 28040-Madrid, Spain
Rights & Permissions[Opens in a new window]

Abstract

Let A be an algebra of continuous real functions on a topological space X. We study when every nonzero algebra homomorphism φ: AR is given by evaluation at some point of X. In the case that A is the algebra of rational functions (or real-analytic functions, or Cm -functions) on a Banach space, we provide a positive answer for a wide class of spaces, including separable spaces and super-reflexive spaces (with nonmeasurable cardinal).

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1994

References

1. Anderson, F. W., Approximation in systems of real-valued continuous functions, Trans. Amer. Math. Soc. 103(1962), 249271.CrossRefGoogle Scholar
2. Arias-de-Reyna, J., A real-valuedhomomorphism on algebras of differentiablefunctions, Proc. Amer. Math. Soc 104(1988), 1054- 1058.CrossRefGoogle Scholar
3. Aron, R. M., Compact polynomials and compact differentiable mappings between Banach spaces, Sém. P. Lelong 1974/75, L.N.M. 524, Springer Verlag, 1976, 231- 222.Google Scholar
4. Biström, P., Bjon, S. and Lindström, M., Remarks on homomorphisms on certain subalgebras of C{X), Math. Japon. 36(1991).Google Scholar
5 Biström, P., Homomorphisms on some function algebras, Monatsh. Math. 111(1991), 93- 97.CrossRefGoogle Scholar
6. Biström, P., Function algebras on which homomorphisms are point evaluations on sequences, Manuscripta Math. 73(1991), 179- 185.CrossRefGoogle Scholar
7. Biström, P. and Lindström, M., Homomorphisms on C(E) and C-bounding sets, Monatsh. Math. 115 (1993), 257-266.CrossRefGoogle Scholar
8. Corson, H. H., The weak topology of a Banach space, Trans. Amer. Math. Soc. 101(1961), 115.CrossRefGoogle Scholar
9. Diestel, J., Geometry of Banach spaces. Selected topics, L.N.M. 485, Springer Verlag.Google Scholar
10. Edgar, G. A., Measurability in a Banach space, II, Indiana Univ. Math. J. 28(1979), 559-579.Google Scholar
11. Engelking, R., General Topology, Monograf. Math. Warsaw, (1977).Google Scholar
12. Garrido, M. I. and Montalvo, F., Uniform approximation theorems for real-valued continuous functions, Topology Appl. 45(1992), 145155.CrossRefGoogle Scholar
13. Gillman, L. and Jerison, M., Rings of continuous functions, Princeton, New Jersey, 1960.Google Scholar
14. Gómez, J. and Llavona, J. G., Multiplicative functional on function algebras, Rev. Mat. Univ. Complutense Madrid 1(1988), 1922.Google Scholar
15. Hirschowitz, A., Sur le non-plongementdes variétés analytiques banachiques réeles, C. R. Acad. Sci. Paris 269(1969), 844-846.Google Scholar
16. Jaramillo, J. A., Algebras defunciones continuas y diferenciables. Homomorfismose interpolación, Thesis. Univ. Complutense, Madrid, 1987.Google Scholar
17. Jaramillo, J. A.,Multiplicativejunctionals on algebras of differentiablefunctions, Arch. Math. 58( 1992), 384-387.Google Scholar
18. Jaramillo, J. A. and Llavona, J. G., On the spectrum of Cl b{E), Math. Ann. 287(1990), 531-538.Google Scholar
19. Jech, T., Set Theory, Academic Press, 1978.Google Scholar
20. John, K., Torunczyk, H. and Zizler, V., Uniformly smooth partitions of unity on super reflexive Banach spaces, Studia Math. 70(1981), 129-137.CrossRefGoogle Scholar
21. Kriegl, A., Michor, P. and Schachermayer, W., Characters on algebras of smooth functions, Ann. Global Anal. Geom. 7(1989), 85-92.CrossRefGoogle Scholar
22. Michael, E. A., Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11(1952).Google Scholar
You have Access
4
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Homomorphisms on Function Algebras
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Homomorphisms on Function Algebras
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Homomorphisms on Function Algebras
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *