Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T12:32:13.868Z Has data issue: false hasContentIssue false

GCR and CCR Steinberg Algebras

Published online by Cambridge University Press:  23 August 2019

Lisa O. Clark
Affiliation:
School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600,Wellington 6140, New Zealand Email: lisa.clark@vuw.ac.nz
Benjamin Steinberg
Affiliation:
Department of Mathematics, City College of New York, Convent Avenue at 138th Street, New York,New York 10031, USA Email: bsteinberg@ccny.cuny.edu
Daniel W. van Wyk
Affiliation:
Department of Mathematics, Dartmouth College, Hanover, NH03755-3551, USA Email: daniel.w.van.wyk@dartmouth.edu

Abstract

Kaplansky introduced the notions of CCR and GCR $C^{\ast }$-algebras, because they have a tractable representation theory. Many years later, he introduced the notions of CCR and GCR rings. In this paper we characterize when the algebra of an ample groupoid over a field is CCR and GCR. The results turn out to be exact analogues of the corresponding characterization of locally compact groupoids with CCR and GCR $C^{\ast }$-algebras. As a consequence, we classify the CCR and GCR Leavitt path algebras.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The second author thanks the Fulbright Commission for sponsoring his stay at the Universidade Federal de Santa Catarina in Florianopolis, Brazil where much of this work was done. The third author was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

References

Abrams, G., Ara, P., and Molina, M. S., Leavitt path algebras. Lecture Notes in Mathematics, 2191, London, Springer, 2017.CrossRefGoogle Scholar
Arveson, W., An invitation to C -algebras. Graduate Texts in Mathematics, 39, Springer-Verlag, New York, 1976.CrossRefGoogle Scholar
Brešar, M., Introduction to noncommutative algebra. Universitext, Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-08693-4CrossRefGoogle Scholar
Clark, L. O., CCR and GCR groupoid C -algebras. Indiana U. Math. J. 56(2007), 20872110. https://doi.org/10.1512/iumj.2007.56.2955CrossRefGoogle Scholar
Clark, L. O., Farthing, C., Sims, A., and Tomforde, M., A groupoid generalisation of Leavitt path algebras. Semigroup Forum 89(2014), 501517. https://doi.org/10.1007/s00233-014-9594-zCrossRefGoogle Scholar
Clark, L. O. and Pangalela, Y. E. P., Kumjian-pask algebras of finitely aligned higher-rank graphs. J. Algebra 482(2017), 364397. https://doi.org/10.1016/j.jalgebra.2017.03.038CrossRefGoogle Scholar
Cohn, P. M., Algebra. Vol. 3. Second ed., John Wiley & Sons, Ltd., Chichester, 1991.Google Scholar
Ephrem, M., Characterizing liminal and type I graph C -algebras. J. Operator Theory 52(2004), 303323.Google Scholar
Glimm, J., Type I C -algebras. Ann. of Math. 73(1961), 572612. https://doi.org/10.2307/1970319CrossRefGoogle Scholar
Gootman, E. C., The type of some C and W -algebras associated with transformation groups. Pacific J. Math. 48(1973), 93106.CrossRefGoogle Scholar
Green, J. A., Polynomial representations of GLn, Second ed., Lecture Notes in Mathematics, 830, Springer, Berlin, 2007.Google Scholar
Isaacs, I. M. and Passman, D. S., Groups with representations of bounded degree. Canad. J. Math 16(1964), 299309. https://doi.org/10.4153/CJM-1964-029-5CrossRefGoogle Scholar
Kaplansky, I., Groups with representations of bounded degree. Canad. J. Math. 1(1949), 105112. https://doi.org/10.4153/cjm-1949-011-9CrossRefGoogle Scholar
Kaplansky, I., The structure of certain operator algebras. Trans. Amer. Math. Soc. 70(1951), 219255. https://doi.org/10.2307/1990368CrossRefGoogle Scholar
Kaplansky, I., CCR-rings. Pacific J. Math. 137(1989), 155157.CrossRefGoogle Scholar
Lawson, M. V., Inverse semigroups. The theory of partial symmetries. World Scientific Publishing Co. Inc., River Edge, NJ, 1998. https://doi.org/10.1142/9789812816689CrossRefGoogle Scholar
Lawson, M. V. and Vdovina, A., The universal Boolean inverse semigroup presented by the abstract Cuntz-Krieger relations. arxiv:1902.02583Google Scholar
Passman, D. S. and Temple, W. V., Groups with all irreducible modules of finite degree. In: Algebra (Moscow, 1998). de Gruyter, Berlin, 2000, pp. 263279.Google Scholar
Paterson, A. L. T., Groupoids, inverse semigroups, and their operator algebras. Progress in Mathematics, 170, Birkhäuser Boston Inc., Boston, MA, 1999. https://doi.org/10.1007/978-1-4612-1774-9CrossRefGoogle Scholar
Raeburn, I., Sims, A., and Yennd, T., The C -algebras of finitely aligned higher-rank graphs. J. Funct. Anal. 213(2004), 206240. https://doi.org/10.1016/j.jfa.2003.10.014CrossRefGoogle Scholar
Ramsay, A., The Mackey-Glimm dichotomy for foliations and other Polish groupoids. J. Funct. Anal. 94(1990), 358374. https://doi.org/10.1016/0022-1236(90)90018-GCrossRefGoogle Scholar
Roseblade, J. E., Group rings of polycyclic groups. J. Pure Appl. Algebra 3(1973), 307328. https://doi.org/10.1016/0022-4049(73)90034-0CrossRefGoogle Scholar
Siles Molina, M. and Solanilla Hernández, J. F., Morita equivalence and Morita invariant properties: applications in the context of Leavitt path algebras. In: Non-associative and non-commutative algebra and operator theory. Springer Proc. Math. Stat., 160, Springer, Cham, 2016, pp. 83103.CrossRefGoogle Scholar
Snider, R. L., Periodic groups whose simple modules have finite central endomorphism dimension. Proc. Amer. Math. Soc. 134(2006), 34853486. https://doi.org/10.1090/S0002-9939-06-08438-3CrossRefGoogle Scholar
Steinberg, B., A groupoid approach to discrete inverse semigroup algebras. Adv. Math. 223(2010), 689727. https://doi.org/10.1016/j.aim.2009.09.001CrossRefGoogle Scholar
Steinberg, B., Modules over étale groupoid algebras as sheaves. J. Aust. Math. Soc. 97(2014), 418429. https://doi.org/10.1017/S1446788714000342CrossRefGoogle Scholar
Thoma, E., Über unitäre Darstellungen abzählbarer, diskreter Gruppen. Math. Ann. 153(1964), 111138. https://doi.org/10.1007/BF01361180CrossRefGoogle Scholar
van Wyk, D. W., The orbit spaces of groupoids whose C -algebras are CCR. J. Math. Anal. Appl. 478(2019), 1, 304319. https://doi.org/10.1016/j.jmaa.2019.05.034CrossRefGoogle Scholar
van Wyk, D. W., The orbit spaces of groupoids whose C -algebras are GCR. J. Operator Theory 80(2018), 167185. https://doi.org/10.7900/jot.2017sep11.2185CrossRefGoogle Scholar
Williams, D. P., The topology on the primitive ideal space of transformation group C - algebras and C.C.R transformation group C -algebras. Trans. Amer. Math. Soc. 266(1981), 335359. https://doi.org/10.2307/1998427Google Scholar
Williams, D. P., Crossed products of C -algebras. Mathematical Surveys and Monographs, 134, American Mathematical Society, Providence, RI, 2007. https://doi.org/10.1090/surv/134CrossRefGoogle Scholar
Yeend, T., Groupoid models for the C -algebras of topological higher-rak graphs. J. Operator Theory 51(2017), 95120.Google Scholar